Parallel Multi-Objective Evolutionary Algorithm for Constrained Multi-Objective Optimization

Most real-world problems aim at achieving multiple objectives under a pool of constraints. Generally, the objectives of this problem category are contradictory. These problems are modeled as constrained multi-objective optimization problems (CMOPs). Solving a CMOP leads to finding an optimal solutio...

Full description

Saved in:
Bibliographic Details
Published in:International Arab Conference on Information Technology (Online) pp. 1 - 6
Main Authors: Belaiche, Leyla, Kahloul, Laid, Grid, Maroua, Abidallah, Nedjma, Benharzallah, Saber
Format: Conference Proceeding
Language:English
Published: IEEE 06.12.2023
Subjects:
ISSN:2831-4948
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Most real-world problems aim at achieving multiple objectives under a pool of constraints. Generally, the objectives of this problem category are contradictory. These problems are modeled as constrained multi-objective optimization problems (CMOPs). Solving a CMOP leads to finding an optimal solution, which trade-offs between the conflicting objectives respecting a set of constraints. Constrained multi-objective evolutionary algorithms (CMOEA) are a suitable class of based-evolutionary algorithms for finding a solution to CMOP problems. Finding an optimal solution for a large-scale problem with CMOEAs represents a time-consuming task, and the search process may lead to premature convergence. Exploiting parallel technologies is an omnipresent solution for improving the performance of CMOEAs without deteriorating the solutions' quality. In this paper, a paralleled version of a recent CMOEA algorithm named constrained multi-objective optimization evolutionary algorithms based on decomposition and directed mating (CMOEA/D-DMA), is proposed (PCMOEA/D-DMA) based on a multi-population mechanism and implemented under a synchronous master-slave parallel model. Based on the hypervolume metric and execution time, a well-known CMOP (mCDTLZ) is used for experimenting with the proposed PCMOEA/D-DMA and comparing it with the sequential CMOEA/D-DMA. Results show that PCMOEA/D-DMA outperforms the sequential CMOEA/D-DMA regarding execution time metric.
AbstractList Most real-world problems aim at achieving multiple objectives under a pool of constraints. Generally, the objectives of this problem category are contradictory. These problems are modeled as constrained multi-objective optimization problems (CMOPs). Solving a CMOP leads to finding an optimal solution, which trade-offs between the conflicting objectives respecting a set of constraints. Constrained multi-objective evolutionary algorithms (CMOEA) are a suitable class of based-evolutionary algorithms for finding a solution to CMOP problems. Finding an optimal solution for a large-scale problem with CMOEAs represents a time-consuming task, and the search process may lead to premature convergence. Exploiting parallel technologies is an omnipresent solution for improving the performance of CMOEAs without deteriorating the solutions' quality. In this paper, a paralleled version of a recent CMOEA algorithm named constrained multi-objective optimization evolutionary algorithms based on decomposition and directed mating (CMOEA/D-DMA), is proposed (PCMOEA/D-DMA) based on a multi-population mechanism and implemented under a synchronous master-slave parallel model. Based on the hypervolume metric and execution time, a well-known CMOP (mCDTLZ) is used for experimenting with the proposed PCMOEA/D-DMA and comparing it with the sequential CMOEA/D-DMA. Results show that PCMOEA/D-DMA outperforms the sequential CMOEA/D-DMA regarding execution time metric.
Author Abidallah, Nedjma
Kahloul, Laid
Grid, Maroua
Belaiche, Leyla
Benharzallah, Saber
Author_xml – sequence: 1
  givenname: Leyla
  surname: Belaiche
  fullname: Belaiche, Leyla
  email: leila.belaiche@univ-biskra.dz
  organization: University of Biskra,LINFI Laboratory,Biskra,Algeria
– sequence: 2
  givenname: Laid
  surname: Kahloul
  fullname: Kahloul, Laid
  email: l.kahloul@univ-biskra.dz
  organization: University of Biskra,LINFI Laboratory,Biskra,Algeria
– sequence: 3
  givenname: Maroua
  surname: Grid
  fullname: Grid, Maroua
  email: maroua.grid@univ-biskra.dz
  organization: University of Biskra,LINFI Laboratory,Biskra,Algeria
– sequence: 4
  givenname: Nedjma
  surname: Abidallah
  fullname: Abidallah, Nedjma
  email: nedjma.abidallah@univ-biskra.dz
  organization: University of Biskra,LINFI Laboratory,Biskra,Algeria
– sequence: 5
  givenname: Saber
  surname: Benharzallah
  fullname: Benharzallah, Saber
  email: sbharz@yahoo.fr
  organization: University of Biskra,LINFI Laboratory,Biskra,Algeria
BookMark eNplkM1Kw0AUhUdRsNa-gWBeIPXO_8wyhFoLlbioO6FM0zs6ZZKUZFrQp7eirjybs_o-DueaXLRdi4TcUZhSCva-KBcraU6ZMmB8SkFIrpk-IxOrreESuBEc9DkZMcNpLqwwV2QyDDsA4AzESTIir8-udzFizJ4OMYW82uywTuGI2ezYxUMKXev6j6yIb10f0nuT-a7Pyq4dUu9Ci9t_WLVPoQmf7pu8IZfexQEnvz0mLw-zVfmYL6v5oiyWeaDUptwDE4hQoxO1Ml5vpBHSaGsZeIZMeaWU2yq6YbVmW6ct-hqlo1airZ2lfExuf7wBEdf7PjSnzeu_Q_gXO6pY-g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACIT58888.2023.10453727
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350384307
EISSN 2831-4948
EndPage 6
ExternalDocumentID 10453727
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-f024ee0cea4c68f7b5845879920f2e26f666ad61b2c72da79efce5a195e9ca913
IEDL.DBID RIE
IngestDate Wed Aug 27 02:06:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-f024ee0cea4c68f7b5845879920f2e26f666ad61b2c72da79efce5a195e9ca913
PageCount 6
ParticipantIDs ieee_primary_10453727
PublicationCentury 2000
PublicationDate 2023-Dec.-6
PublicationDateYYYYMMDD 2023-12-06
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-6
  day: 06
PublicationDecade 2020
PublicationTitle International Arab Conference on Information Technology (Online)
PublicationTitleAbbrev ACIT
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204110
Score 1.8529043
Snippet Most real-world problems aim at achieving multiple objectives under a pool of constraints. Generally, the objectives of this problem category are...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms archives of infeasible solutions
constrained MOEA
Constrained multi-objective optimization problems
directed mating
Evolutionary computation
Main-secondary
multi-population mechanism
Numerical models
parallelism
Performance evaluation
Process planning
Search problems
synchronous master-slave parallel model
Task analysis
Title Parallel Multi-Objective Evolutionary Algorithm for Constrained Multi-Objective Optimization
URI https://ieeexplore.ieee.org/document/10453727
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA62ePCkYsWdHLymTjJZJsdSWvTS9lChB6FkeaOVLjJOC_57M-lYEfHgLQk8CFne95K8Lx9Ct0oKy3PJifXMk-AlOTGK-1AVwinLbEZNFJtQg0E2mehRTVaPXBgAiMln0K6K8S3fr9y6uioLO5yLNABuAzWUkluy1u5CJWUJD1hW53DRRN91ug9jEU54VQYXS9tf1j90VCKM9A__2YEj1Pom5OHRDmqO0R4sT9DTyBSVEsocRxYtGdrXrffCvU29oEzxgTvz51UxK18WOMSnuBLojLIQ4H-ZDYP7WNS8zBZ67PfG3XtSiyWQGaW6JHkAW4DEgeFOZrmyIbIQmdKaJTkDJvNwTjFeUsucYt4oDbkDYagWoJ3RND1FzeVqCWcIA5g0ODJpaWZDvGYNczQ1LvMhmHQu0-eoVQ3N9G37H8b0a1Qu_mi_RAfVBMQkEHmFmmWxhmu07zbl7L24ibP4CWQBn_w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPHtHrxu3WSTTXIspaVibXuo0INQ8pjVSh-ybgv-e7PptiLiwVsSGAh5zDdJ5suH0C1PmKZpQkNtiQ2dl6Sh4tS6KmOGa6IFVl5sgne7YjiU_ZKs7rkwAOCTz6BWFP1bvp2bRXFV5nY4ZbED3G20wygl0YqutblSiUlEHZqVWVw4knf1xv2AuTNekcNF4tra_oeSigeS1sE_u3CIqt-UvKC_AZsjtAWzY_TcV1mhhTIJPI827Om3lf8KmstySansM6hPXubZOH-dBi5CDQqJTi8MAfaXWc85kGnJzKyip1Zz0GiHpVxCOMZY5mHq4BYgMqCoSUTKtYstmOBSkiglQJLUnVSUTbAmhhOruITUAFNYMpBGSRyfoMpsPoNTFACo2LmyRGOhXcSmFTE4VkZYF04aI-QZqhZDM3pf_YgxWo_K-R_tN2ivPXjsjDr33YcLtF9Mhk8JSS5RJc8WcIV2zTIff2TXfka_AOQBo0M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Arab+Conference+on+Information+Technology+%28Online%29&rft.atitle=Parallel+Multi-Objective+Evolutionary+Algorithm+for+Constrained+Multi-Objective+Optimization&rft.au=Belaiche%2C+Leyla&rft.au=Kahloul%2C+Laid&rft.au=Grid%2C+Maroua&rft.au=Abidallah%2C+Nedjma&rft.date=2023-12-06&rft.pub=IEEE&rft.eissn=2831-4948&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FACIT58888.2023.10453727&rft.externalDocID=10453727