Application of Factor Analysis Optimization Error Back Propagation Algorithm FA-BP Neural Network Equipment Fault Diagnosis Model

To enhance the precision of equipment fault diagnosis, a novel device fault diagnosis method based on factor analysis (FA) and an improved error back propagation (BP) algorithm has been proposed. An FA-BP neural network diagnosis model has been developed to enable intelligent diagnosis of equipment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 IEEE International Conference on Image Processing and Computer Applications (ICIPCA) S. 32 - 37
1. Verfasser: Liu, Yue
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 11.08.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To enhance the precision of equipment fault diagnosis, a novel device fault diagnosis method based on factor analysis (FA) and an improved error back propagation (BP) algorithm has been proposed. An FA-BP neural network diagnosis model has been developed to enable intelligent diagnosis of equipment faults. Firstly, three common factors influencing motor faults were extracted using FA, which served as effective input data for the BP neural network. Subsequently, the data that was optimized by factor analysis was utilized as the input layer of the BP neural network, and the data were trained and tested by employing Matlab software. Eventually, the results of fault diagnosis prediction obtained from the FA-BP neural network model were compared with those attained using the traditional BP neural network. The experimental findings affirm that the improved model achieves significantly elevated accuracy of equipment fault prediction and swifter training speed compared to the traditional error back propagation algorithm.
AbstractList To enhance the precision of equipment fault diagnosis, a novel device fault diagnosis method based on factor analysis (FA) and an improved error back propagation (BP) algorithm has been proposed. An FA-BP neural network diagnosis model has been developed to enable intelligent diagnosis of equipment faults. Firstly, three common factors influencing motor faults were extracted using FA, which served as effective input data for the BP neural network. Subsequently, the data that was optimized by factor analysis was utilized as the input layer of the BP neural network, and the data were trained and tested by employing Matlab software. Eventually, the results of fault diagnosis prediction obtained from the FA-BP neural network model were compared with those attained using the traditional BP neural network. The experimental findings affirm that the improved model achieves significantly elevated accuracy of equipment fault prediction and swifter training speed compared to the traditional error back propagation algorithm.
Author Liu, Yue
Author_xml – sequence: 1
  givenname: Yue
  surname: Liu
  fullname: Liu, Yue
  email: 827219834@qq.com
  organization: Tianjin University of Technology,Tianjin,China
BookMark eNo1kL1OwzAYRY0EA5S-AYN5gAT_pbHHNLSlUqEdYK4-J06w6sTBdYXKxptTVJiOdI90hnuDLnvfG4TuKUkpJephWS43ZZEpRlTKCOMpJSyThNILNFa5kjwjnIpJTq7RdzEMzlYQre-xb_AcqugDLnpwx73d4_UQbWe_zn4WwslNodrhTfADtOe5cK0PNr53eF4k0w1-MYcA7oT46cMOzz4OduhMH0_xg4v40ULb-9_4s6-Nu0VXDbi9Gf9xhN7ms9fyKVmtF8uyWCWWUhUTY1RVs4bJzDANQlMChudZLaQUhEGt9aTRAIxAo7moKqqbPBMy10IClZzzEbo7d60xZjsE20E4bv-f4T_IdWDV
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIPCA59209.2023.10258011
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350314670
EndPage 37
ExternalDocumentID 10258011
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-ee9cd2f285e2ba4b10ae375d488402adbb6fbaa20afb34cc1bf75487b48a18333
IEDL.DBID RIE
IngestDate Wed Oct 04 09:12:47 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-ee9cd2f285e2ba4b10ae375d488402adbb6fbaa20afb34cc1bf75487b48a18333
PageCount 6
ParticipantIDs ieee_primary_10258011
PublicationCentury 2000
PublicationDate 2023-Aug.-11
PublicationDateYYYYMMDD 2023-08-11
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-Aug.-11
  day: 11
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Image Processing and Computer Applications (ICIPCA)
PublicationTitleAbbrev ICIPCA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8407687
Snippet To enhance the precision of equipment fault diagnosis, a novel device fault diagnosis method based on factor analysis (FA) and an improved error back...
SourceID ieee
SourceType Publisher
StartPage 32
SubjectTerms Analytical models
Backpropagation
BP neural network
Computational modeling
equipment fault diagnosis
error back propagation
factor analysis
Fault diagnosis
Neural networks
Training
Vibrations
Title Application of Factor Analysis Optimization Error Back Propagation Algorithm FA-BP Neural Network Equipment Fault Diagnosis Model
URI https://ieeexplore.ieee.org/document/10258011
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA46RDypOPGbCF47m36s6bGbKw5k9qCy28jHGx12q9bWu__cJO0cHjx4aknLW0h4kr7J87wPQlc00AjiEgxLXDkBKO5wxYjDhepzV8Z-YF0Unu6iyYROp3HWitWtFgYALPkMeubWnuXLQtRmq0wj3Av1jKqTnc0o6jdirW102dbNvB4Px9kwCWPPNQoUz--t3v_lnGIXjnT3n5_cQ921BA9nP4vLPtqA5QH6StbHzbhQOLVmOXhVWATfa_wvWmElHpWlfjZg4tUE0vNG05zkz0U5r14WOE2cQYZNdQ6W64ulg-PRez23FCIdvM4rfNNQ8XRw45qWd9FjOnoY3jqth4IzJySuHIBYSE95NASPs4ATl4EfhVLjVmeOTHLeV5wxz2WK-4EQhKvIJDE8oEyj3fcPUWdZLOEIYU5BKpfoX3IggRSSKp1cGX8rnyovpnCMuqb_Zm9NmYzZqutO_mg_RTtmlMwGLSFnqFOVNZyjLfFZzT_KCzu43xssqa8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQIGACRBHfGIk1JXaS1hnT0qgVpWQoqFvlT4hIGwgJO_8c202pGBiYYjnKRbJ1Z5_93j0AromvPYgJaVDiyvGlYg5TFDmMqxZzRej5VkXhadgejchkEiY1Wd1yYaSUFnwmm6Zp7_JFzitzVKY9HAc6oupkZ8NIZ9V0rS1wVVfOvBl0B0k3CkLsGg4K9prLL35pp9ilI97950_3QGNFwoPJz_KyD9bk_AB8RasLZ5grGFu5HLgsLQIfdASY1dRK2CsK_a5D-asxpCPHojvKnvMiLV9mMI6cTgJNfQ6a6YcFhMPee5VaEJE2XmUlvF2A8bRxo5uWNcBj3Bt3-06touCkCIWlI2XIBVaYBBIz6jPkUum1A6E9V-eOVDDWUoxS7FLFPJ9zxFTbpDHMJ1T7u-cdgvV5PpdHADIihXKR3pRL5AsuiNLplVG48ojCIZHHoGHGb_q2KJQxXQ7dyR_9l2C7P74fToeD0d0p2DEzZo5rEToD62VRyXOwyT_L9KO4sBP9DRx7rPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Image+Processing+and+Computer+Applications+%28ICIPCA%29&rft.atitle=Application+of+Factor+Analysis+Optimization+Error+Back+Propagation+Algorithm+FA-BP+Neural+Network+Equipment+Fault+Diagnosis+Model&rft.au=Liu%2C+Yue&rft.date=2023-08-11&rft.pub=IEEE&rft.spage=32&rft.epage=37&rft_id=info:doi/10.1109%2FICIPCA59209.2023.10258011&rft.externalDocID=10258011