New Energy Vehicle Customer Mining Model Based on Machine Learning Algorithm

The new energy automobile industry is a strategic emerging industry, and accurately finding the customer targets of different types of new energy automobiles as well as improving the customer experience of different types of new energy automobiles are the main parts to promote the development of the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE) s. 1 - 6
Hlavní autori: Huang, Kaican, Xu, Nuo, Liao, Guanxing, Li, Weiming
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 26.04.2024
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The new energy automobile industry is a strategic emerging industry, and accurately finding the customer targets of different types of new energy automobiles as well as improving the customer experience of different types of new energy automobiles are the main parts to promote the development of the new energy automobile industry. Firstly, This paper analyzes the main indicators affecting customer satisfaction of three types of new energy vehicles: joint venture brands, independent brands, and new power brands. Secondly, based on different new energy vehicle brands, each of them establishes three types of classification models, namely Random Forest, XGboost, and LightGBM, and divides the customer types into two types: purchasing and non-purchasing, and optimizes them using Bayesian parameterization, so as to make the three brands get their own optimal customer mining models. In addition, based on the customer mining models of different brands, this paper uses the collected customer information and the satisfaction of new energy vehicle experience to predict the possibility of customers to buy the car, and all of them get more than 90% accuracy. This paper provides theoretical support for the sales direction of new energy vehicles.
AbstractList The new energy automobile industry is a strategic emerging industry, and accurately finding the customer targets of different types of new energy automobiles as well as improving the customer experience of different types of new energy automobiles are the main parts to promote the development of the new energy automobile industry. Firstly, This paper analyzes the main indicators affecting customer satisfaction of three types of new energy vehicles: joint venture brands, independent brands, and new power brands. Secondly, based on different new energy vehicle brands, each of them establishes three types of classification models, namely Random Forest, XGboost, and LightGBM, and divides the customer types into two types: purchasing and non-purchasing, and optimizes them using Bayesian parameterization, so as to make the three brands get their own optimal customer mining models. In addition, based on the customer mining models of different brands, this paper uses the collected customer information and the satisfaction of new energy vehicle experience to predict the possibility of customers to buy the car, and all of them get more than 90% accuracy. This paper provides theoretical support for the sales direction of new energy vehicles.
Author Xu, Nuo
Liao, Guanxing
Li, Weiming
Huang, Kaican
Author_xml – sequence: 1
  givenname: Kaican
  surname: Huang
  fullname: Huang, Kaican
  email: 15728396567@163.com
  organization: Guangzhou Maritime University,Guangzhou,China
– sequence: 2
  givenname: Nuo
  surname: Xu
  fullname: Xu, Nuo
  email: kino1525863924@163.com
  organization: Guangzhou Maritime University,Guangzhou,China
– sequence: 3
  givenname: Guanxing
  surname: Liao
  fullname: Liao, Guanxing
  email: 13714235324@163.com
  organization: Guangzhou Maritime University,Guangzhou,China
– sequence: 4
  givenname: Weiming
  surname: Li
  fullname: Li, Weiming
  email: st2393975880@gmail.com
  organization: Guangzhou Maritime University,Guangzhou,China
BookMark eNo1j81KxDAYRSPoQsd5AxfBfWuSNk2yHGPVgXZmo26HNPnaBtpU0orM2zv-LS7nwoEL9wqdhykAQreUpJQSdbfVD7rUZUEkEykjLE8p4bkkXJyhtRJKZpxkVBZEXaJqB5-4DBC7I36D3tsBsP6Yl2mEiGsffOhwPTkY8L2ZweEp4NrY3gfAFZj44zdDN0W_9OM1umjNMMP6jyv0-li-6Oek2j9t9aZKPKVqSUCCpTK3LQWrCmFZU7RG5ZzmjXCsYdyZU9S3aE6NEemgZVzI1jGQDWQrdPO76wHg8B79aOLx8H8y-wLss01B
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDCECE60827.2024.10548057
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350318609
EndPage 6
ExternalDocumentID 10548057
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-e8ec184cf1ec967c2b6fa94514b7d2b25da25d97c2bba25208def2578fd2e8be3
IEDL.DBID RIE
IngestDate Wed Jul 03 05:40:18 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-e8ec184cf1ec967c2b6fa94514b7d2b25da25d97c2bba25208def2578fd2e8be3
PageCount 6
ParticipantIDs ieee_primary_10548057
PublicationCentury 2000
PublicationDate 2024-April-26
PublicationDateYYYYMMDD 2024-04-26
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-26
  day: 26
PublicationDecade 2020
PublicationTitle 2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE)
PublicationTitleAbbrev ICDCECE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8679188
Snippet The new energy automobile industry is a strategic emerging industry, and accurately finding the customer targets of different types of new energy automobiles...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Bayes methods
bayesian tuning
Biological system modeling
customer mining models
Data models
electric vehicle sales
Industries
Machine learning algorithms
machine learning classification algorithms
machine learning prediction
Predictive models
Switches
Title New Energy Vehicle Customer Mining Model Based on Machine Learning Algorithm
URI https://ieeexplore.ieee.org/document/10548057
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVoxcAEiCLe8sCakrh52COEVCC1VQeoulW59nVbqU2qkPL92G4KYmBgiaw4kaVr2ef6cc4h5D4PYq1yJjzomUdoDVMh4sLLtVahSRiQOymlySAZjfh0KsYNWd1xYRDRXT7Dri26s3xVyq3dKjMj3KqTRUmLtJIk3pG1GiHRwBcPr-lzmqVZbFAtMSs_Fnb3P_yyTnHI0T_-Z5snpPPDwaPjb3Q5JQdYnJGBmZNo5uh6dIIL2-c03Zr8bY0VHTqvB2rdzVb0yaCTomVBh-62JNJGSHVOH1fzslrWi3WHvPezt_TFa_wQvGUQiNpDjtIsyKQOUIo4kQxinYvQpDyQKAYsMkGPlLAVYErM5wq1HZJaMeSAvXPSLsoCLwhlwIHnfgAGwUNAzUH0zFcy9BEBInFJOjYUs81O8mK2j8LVH--vyZENuD1mYfENadfVFm_Jofyslx_VneuoL1lWlik
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG0UTfSkRoz4swevw610W3vUOQJxEA5IuJF1_QoksJk5_Ptty9B48OBladYtTb6mfV9_vPcQeki9QMmUcEd09IMaw1ThM-6kSkmqEwZgVkppkoTDIZtO-agmq1suDADYy2fQNkV7li-LbGO2yvQIN-pkfriPDnxKibula9VSop7LH_vRSxRHcaBxLdRrP0Lbu19-madY7Oie_LPVU9T8YeHh0Te-nKE9yM9RomclHFvCHp7AwvQ6jjY6g1tDiQfW7QEbf7MVftb4JHGR44G9Lwm4llKd46fVvCiX1WLdRG_deBz1nNoRwVl6Hq8cYJDpJVmmPMh4EGZEBCrlVCc9IpREEF-H3ZfcVAhdIi6ToMygVJIAE9C5QI28yOESYSKYYKnrCY3hVIBignf0Vxl1AYTweQs1TShm71vRi9kuCld_vL9HR73xIJkl_eHrNTo2wTeHLiS4QY2q3MAtOsw-q-VHeWc77QtYFZlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+Third+International+Conference+on+Distributed+Computing+and+Electrical+Circuits+and+Electronics+%28ICDCECE%29&rft.atitle=New+Energy+Vehicle+Customer+Mining+Model+Based+on+Machine+Learning+Algorithm&rft.au=Huang%2C+Kaican&rft.au=Xu%2C+Nuo&rft.au=Liao%2C+Guanxing&rft.au=Li%2C+Weiming&rft.date=2024-04-26&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICDCECE60827.2024.10548057&rft.externalDocID=10548057