User-side Cloud Energy Storage Locating and Capacity Configuration

Under the background of new power system, economic and effective utilization of energy storage to realize power storage and controllable transfer is an effective way to enhance the new energy consumption and maintain the stability of power system. In this paper, a cloud energy storage(CES) model is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2) s. 2980 - 2985
Hlavní autoři: Ma, Yongji, Cao, Fen, Zhou, Zhihang, Yang, Anyuan, Wang, Huifang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 15.12.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Under the background of new power system, economic and effective utilization of energy storage to realize power storage and controllable transfer is an effective way to enhance the new energy consumption and maintain the stability of power system. In this paper, a cloud energy storage(CES) model is proposed, which firstly establishes a wind- PV -load time series model based LHS and K-medoids to complete the scenario generation and reduction. MOPSO algorithm is used to achieve the centralized energy storage configuration with voltage, load volatility, and the total cost of social energy use as the indexes. Afterwards, a segmented model is suggested on this basis to realize CES day-ahead scheduling. Eventually, based on the Shapley value, the revenue settlement of users within the cloud is accomplished. The simulated CES model enables the cooperative call of multiple energy storage, which is sufficiently organized and balances the benefits of each subject to ensure the sustainable development of the model.
AbstractList Under the background of new power system, economic and effective utilization of energy storage to realize power storage and controllable transfer is an effective way to enhance the new energy consumption and maintain the stability of power system. In this paper, a cloud energy storage(CES) model is proposed, which firstly establishes a wind- PV -load time series model based LHS and K-medoids to complete the scenario generation and reduction. MOPSO algorithm is used to achieve the centralized energy storage configuration with voltage, load volatility, and the total cost of social energy use as the indexes. Afterwards, a segmented model is suggested on this basis to realize CES day-ahead scheduling. Eventually, based on the Shapley value, the revenue settlement of users within the cloud is accomplished. The simulated CES model enables the cooperative call of multiple energy storage, which is sufficiently organized and balances the benefits of each subject to ensure the sustainable development of the model.
Author Ma, Yongji
Wang, Huifang
Cao, Fen
Zhou, Zhihang
Yang, Anyuan
Author_xml – sequence: 1
  givenname: Yongji
  surname: Ma
  fullname: Ma, Yongji
  email: 12210084@zju.edu.cn
  organization: College of Electrical Engineering, Zhejiang University,Hangzhou,China
– sequence: 2
  givenname: Fen
  surname: Cao
  fullname: Cao, Fen
  email: caofen1@hb.sgcc.com.cn
  organization: Hubei Electric Power Co., Ltd,State Grid,Wuhan,China
– sequence: 3
  givenname: Zhihang
  surname: Zhou
  fullname: Zhou, Zhihang
  email: zhouzx37@hb.sgcc.com.cn
  organization: Hubei Electric Power Co., Ltd,State Grid,Wuhan,China
– sequence: 4
  givenname: Anyuan
  surname: Yang
  fullname: Yang, Anyuan
  email: yangay@hb.sgcc.com.cn
  organization: Hubei Electric Power Co., Ltd,State Grid,Wuhan,China
– sequence: 5
  givenname: Huifang
  surname: Wang
  fullname: Wang, Huifang
  email: huifangwang@zju.edu.cn
  organization: College of Electrical Engineering, Zhejiang University,Hangzhou,China
BookMark eNo1j81KxDAURiPoQsd5A5G8QGt-mqR3qaXqQMGFznq4TW9LYEyGtLPo2zugrj44Bw58d-w6pkiMPUpRSingqd0pA64ypRJKl1IYqYx0V2wLDmpthK6MgOqWvexnysUcBuLNMZ0H3kbK08o_l5RxIt4lj0uIE8c48AZP6MOy8ibFMUznfFEp3rObEY8zbf92w_av7VfzXnQfb7vmuSuClLAUVBMY1XuqHClbGWt7j1bD2FsrgHAckAQgKiBf10DW-Rp7e2HGOE9Ob9jDbzcQ0eGUwzfm9fB_Tf8ArlhI6Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/EI259745.2023.10512517
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350345094
EndPage 2985
ExternalDocumentID 10512517
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-e8e952bce47e264566bca639fb6609eafdae09aa29ec889e67c8ab6e09557ce73
IEDL.DBID RIE
IngestDate Wed May 22 07:08:25 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-e8e952bce47e264566bca639fb6609eafdae09aa29ec889e67c8ab6e09557ce73
PageCount 6
ParticipantIDs ieee_primary_10512517
PublicationCentury 2000
PublicationDate 2023-Dec.-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-15
  day: 15
PublicationDecade 2020
PublicationTitle 2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2)
PublicationTitleAbbrev EI2
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8542826
Snippet Under the background of new power system, economic and effective utilization of energy storage to realize power storage and controllable transfer is an...
SourceID ieee
SourceType Publisher
StartPage 2980
SubjectTerms Analytical models
Cloud computing
cloud energy storage (CES)
configuration
Energy resources
Power system stability
Scheduling
sharing model
Time series analysis
user-side
Voltage
Title User-side Cloud Energy Storage Locating and Capacity Configuration
URI https://ieeexplore.ieee.org/document/10512517
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMcfbnjwpGLF3-TgNbPt1ia5OjYUZAx0sNtIk7cxkFZmu7_f99JN8eDBWyn9QZMm79PXfN8X4F4tTe5t5qTysZcDAmRJlGElTYTea9QpnRjMJtRkoudzM92J1YMWBhHD4jPs8Wb4l-8r13CqjEZ4xvFYdaCjlGrFWjvVbxKbh9Fzynic9dgSvLc_-JdtSoga4-N_3u8Eoh_9nZh-R5ZTOMDyDB5n9LZIdtcUw_eq8WIUZHvilb6aaVIQLxVn38qVsKUXQ4qBjgBb8BXXq6bt5whm49Hb8EnuHBDkOklMLVGjydLC4UAhkQuhV-EsMcWyyPPYoF16i7GxNjXotDaYK6dtkSPXlVMOVf8cumVV4gWItDB9oo8i1pz2GSALamnwJTnXECNGuYSIG2Dx0Ra5WOyf_eqP_ddwxM3MKzuS7Aa69abBWzh023r9ubkLXfMFCHSQNQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NT8JAEIYniiZ6UiPGb_fgdbEtbXf3KoFAREIiJNzIdncgJKYlSP39zhTQePDgrWn6ke52d55O950X4FHNTOpt4qTygZcxAbIkyrCSJkLvNeqITqzMJtRgoCcTM9yK1SstDCJWi8-wwZvVv3xfuJJTZTTCE47Hah8OkjiOwo1ca6v7DQPz1O5FDMhJg03BG7vDfxmnVHGjc_LPO55C_UeBJ4bfseUM9jA_h-cxvS-S_TVF670ovWhXwj3xRt_NNC2IfsH5t3wubO5Fi6KgI8QWfMXFvNz0dB3Gnfao1ZVbDwS5CEOzlqjRJFHmMFZI7ELwlTlLVDHL0jQwaGfeYmCsjQw6rQ2mymmbpciV5ZRD1byAWl7keAkiykyT-CMLNCd-YmRJLQ2_MOUqYkQpV1DnBpguN2Uuprtnv_5j_wMcdUev_Wm_N3i5gWNucl7nESa3UFuvSryDQ_e5Xnys7qtu-gK7uJN8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+7th+Conference+on+Energy+Internet+and+Energy+System+Integration+%28EI2%29&rft.atitle=User-side+Cloud+Energy+Storage+Locating+and+Capacity+Configuration&rft.au=Ma%2C+Yongji&rft.au=Cao%2C+Fen&rft.au=Zhou%2C+Zhihang&rft.au=Yang%2C+Anyuan&rft.date=2023-12-15&rft.pub=IEEE&rft.spage=2980&rft.epage=2985&rft_id=info:doi/10.1109%2FEI259745.2023.10512517&rft.externalDocID=10512517