Using Autoencoders to Denoise Cross-Session Non-Stationarity in EEG-Based Motor-Imagery Brain-Computer Interfaces
A major problem in brain-computer interfaces (BCIs) relates to the non-stationarity of brain signals. Consequently, the performance of a classification algorithm trained for an individual subject on a certain day deteriorates during the following days. The traditional approach is to recalibrate the...
Gespeichert in:
| Veröffentlicht in: | 2022 IEEE 16th International Scientific Conference on Informatics (Informatics) S. 24 - 29 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
23.11.2022
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A major problem in brain-computer interfaces (BCIs) relates to the non-stationarity of brain signals. Consequently, the performance of a classification algorithm trained for an individual subject on a certain day deteriorates during the following days. The traditional approach is to recalibrate the algorithm every session, limiting the wide use of BCIs. Here, we use an autoencoder convolutional neural network to identify a low dimensional representation of the EEG signals from the first day (or days) and show that this allows for stable decoding performance on the following days without resorting to recalibration. Furthermore, we demonstrate that the residual signals, namely the difference between the original and reconstructed EEG, can be used to accurately discriminate among different recording sessions. In line with that, the reconstructed EEG cannot be used to discriminate among recording sessions. This implies that the reconstructed EEG reflects an invariant representation of the subject's intent, whereas the residual signals reflect a non-stationary component, which differs from one session to another. The findings are demonstrated through two different datasets. |
|---|---|
| AbstractList | A major problem in brain-computer interfaces (BCIs) relates to the non-stationarity of brain signals. Consequently, the performance of a classification algorithm trained for an individual subject on a certain day deteriorates during the following days. The traditional approach is to recalibrate the algorithm every session, limiting the wide use of BCIs. Here, we use an autoencoder convolutional neural network to identify a low dimensional representation of the EEG signals from the first day (or days) and show that this allows for stable decoding performance on the following days without resorting to recalibration. Furthermore, we demonstrate that the residual signals, namely the difference between the original and reconstructed EEG, can be used to accurately discriminate among different recording sessions. In line with that, the reconstructed EEG cannot be used to discriminate among recording sessions. This implies that the reconstructed EEG reflects an invariant representation of the subject's intent, whereas the residual signals reflect a non-stationary component, which differs from one session to another. The findings are demonstrated through two different datasets. |
| Author | Rosipal, Roman Almagor, Ophir Shriki, Oren Avin, Ofer |
| Author_xml | – sequence: 1 givenname: Ophir surname: Almagor fullname: Almagor, Ophir email: ophiralm@post.bgu.ac.il organization: Ben-Gurion University of the Negev,Dept. of Cognitive and Brain Sciences,Beersheba,Israel – sequence: 2 givenname: Ofer surname: Avin fullname: Avin, Ofer email: avino@post.bgu.ac.il organization: Ben-Gurion University of the Negev,Dept. of Cognitive and Brain Sciences,Beersheba,Israel – sequence: 3 givenname: Roman surname: Rosipal fullname: Rosipal, Roman email: roman.rosipal@savba.sk organization: Institute of Measurement Science,Slovak Academy of Sciences,Bratislava,Slovakia – sequence: 4 givenname: Oren surname: Shriki fullname: Shriki, Oren email: shrikio@bgu.ac.il organization: Ben-Gurion University of the Negev,Dept. of Cognitive and Brain Sciences and Dept. of Computer Science,Beersheba,Israel |
| BookMark | eNo1kL1OwzAURo0EA5S-AYMnNhf_pIkztiGUSAWG0rm6jW8qS8S32O7Qt6cSsHxnONIZvjt2HSggY49KzpSS9VMXBoojZN-neVXrcqal1jMlpTWFLa_YtK5qa-bSKGmK4pZ9b5MPB744ZcLQk8OYeCb-jIF8Qt5ESklsMCVPgb9TEJt8iVOA6POZ-8DbdiWWkNDxN8oURTfCAeOZLyP4IBoaj6eMkXfhsgP0mO7ZzQBfCad_nLDtS_vZvIr1x6prFmvhlaqzQCkdWDPUtqysBqVdhaWFvauslcYURvdFue8BlZ1bo0pbXfxgnUalnITCTNjDb9cj4u4Y_QjxvPt_wvwADRFciA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/Informatics57926.2022.10083486 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350310344 |
| EndPage | 29 |
| ExternalDocumentID | 10083486 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-e00da83f986782a12d7e68abd788033432c46bcae1858316877e6f8d2e11d0a43 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:14:31 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-e00da83f986782a12d7e68abd788033432c46bcae1858316877e6f8d2e11d0a43 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10083486 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Nov.-23 |
| PublicationDateYYYYMMDD | 2022-11-23 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov.-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE 16th International Scientific Conference on Informatics (Informatics) |
| PublicationTitleAbbrev | INFORMATICS |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8144355 |
| Snippet | A major problem in brain-computer interfaces (BCIs) relates to the non-stationarity of brain signals. Consequently, the performance of a classification... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 24 |
| SubjectTerms | autoencoders brain-computer interface Brain-computer interfaces Classification algorithms Convolutional neural networks Decoding deep learning electroencephalogram Electroencephalography Limiting motor-imagery non-stationarity Recording |
| Title | Using Autoencoders to Denoise Cross-Session Non-Stationarity in EEG-Based Motor-Imagery Brain-Computer Interfaces |
| URI | https://ieeexplore.ieee.org/document/10083486 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uiHhSceJvchBv2dqka9Kjm5sKOgZT2G2kzSv0YKNbJ_jfm5d2igcP3kJCCORBPl7e-76PkKvAJWhRYGKGLEkWGS6YFqCZiYWIIQKIM6-u_ygnEzWfJ9OGrO65MADgm8-gi0Nfyzc2W-NXWQ-FaESk4hZpSSlrstYOuW50M3sNgQfljfsy4diAwHl3s-mXfYpHj_HeP8_dJ50fHh6dfiPMAdmC8pC8-yo_vVlXFkUosRGZVpbeQmmLFdAhwh6b1XIbdGJLNqur7Rpt6mhR0tHojg0ceBn6ZF3GzR5eUcfikw7QLYJtbB6o_yvMsWOrQ17Go-fhPWuME1gRhknFIAiMViJPlIMirkNuJMRKp8blu4FAKmkWxWmmwYG1Qucq6dZzZTiEoQl0JI5Iu7QlHBOamTRKZB_y3McUNArg5ym4vCxzz7w8IR28r8VbrY2x2FzV6R_zZ2QXo4JsPi7OSbtaruGCbGcfVbFaXvqIfgFrAaXb |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aRT2pWPHbHMRb2t0k3Y-jra0ttkuhFXor6WYW9uCutlvBf28mu1U8ePAWEkIgA3lMZt57hNw5JkGTjvYYsiSZ1FwwJUAx7QnhgQTwYquuP_SjKJjNwnFFVrdcGACwzWfQwKGt5es8XuNXWROFaIQMvG2y05KSuyVda4_cV8qZzYrCgwLHLT_k2ILAeWOz7ZeBisWP3uE_Tz4i9R8mHh1_Y8wx2YLshLzbOj99WBc5ylBiKzItcvoIWZ6ugHYQ-NikFNygUZ6xSVlvV2hUR9OMdrtPrG3gS9NRbnJuNnhFJYtP2ka_CLYxeqD2tzDBnq06eel1p50-q6wTWOq6YcHAcbQKRBIGBoy4crn2wQvUQpuM1xFIJo2lt4gVGLgO0LvKN-tJoDm4rnaUFKekluUZnBEa64UM_RYkiY0qKJTATxZgMrPYPPT-Oanjfc3fSnWM-eaqLv6YvyX7_eloOB8OoudLcoARQm4fF1ekVizXcE12448iXS1vbHS_ADWwqSI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+16th+International+Scientific+Conference+on+Informatics+%28Informatics%29&rft.atitle=Using+Autoencoders+to+Denoise+Cross-Session+Non-Stationarity+in+EEG-Based+Motor-Imagery+Brain-Computer+Interfaces&rft.au=Almagor%2C+Ophir&rft.au=Avin%2C+Ofer&rft.au=Rosipal%2C+Roman&rft.au=Shriki%2C+Oren&rft.date=2022-11-23&rft.pub=IEEE&rft.spage=24&rft.epage=29&rft_id=info:doi/10.1109%2FInformatics57926.2022.10083486&rft.externalDocID=10083486 |