Using Reinforcement Learning for Per-Instance Algorithm Configuration on the TSP
Automated Algorithm Configuration (AAC) usually takes a global perspective: it identifies a parameter configuration for an (optimization) algorithm that maximizes a performance metric over a set of instances. However, the optimal choice of parameters strongly depends on the instance at hand and shou...
Gespeichert in:
| Veröffentlicht in: | IEEE Symposium on Computational Intelligence in Multi-Criteria Decision Making S. 361 - 368 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
05.12.2023
|
| Schlagworte: | |
| ISSN: | 2472-8322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Automated Algorithm Configuration (AAC) usually takes a global perspective: it identifies a parameter configuration for an (optimization) algorithm that maximizes a performance metric over a set of instances. However, the optimal choice of parameters strongly depends on the instance at hand and should thus be calculated on a per-instance basis. We explore the potential of Per-Instance Algorithm Configuration (PIAC) by using Reinforcement Learning (RL). To this end, we propose a novel PIAC approach that is based on deep neural networks. We apply it to predict configurations for the Lin-Kernighan heuristic (LKH) for the Traveling Salesperson Problem (TSP) individually for every single instance. To train our PIAC approach, we create a large set of 100 000 TSP instances with 2 000 nodes each - currently the largest benchmark set to the best of our knowledge. We compare our approach to the state-of-the-art AAC method Sequential Model-based Algorithm Configuration (SMAC). The results show that our PIAC approach outperforms this baseline on both the newly created instance set and established instance sets. |
|---|---|
| AbstractList | Automated Algorithm Configuration (AAC) usually takes a global perspective: it identifies a parameter configuration for an (optimization) algorithm that maximizes a performance metric over a set of instances. However, the optimal choice of parameters strongly depends on the instance at hand and should thus be calculated on a per-instance basis. We explore the potential of Per-Instance Algorithm Configuration (PIAC) by using Reinforcement Learning (RL). To this end, we propose a novel PIAC approach that is based on deep neural networks. We apply it to predict configurations for the Lin-Kernighan heuristic (LKH) for the Traveling Salesperson Problem (TSP) individually for every single instance. To train our PIAC approach, we create a large set of 100 000 TSP instances with 2 000 nodes each - currently the largest benchmark set to the best of our knowledge. We compare our approach to the state-of-the-art AAC method Sequential Model-based Algorithm Configuration (SMAC). The results show that our PIAC approach outperforms this baseline on both the newly created instance set and established instance sets. |
| Author | Trautmann, Heike Heins, Jonathan Bossek, Jakob Ludger Preub, Oliver Vinzent Seiler, Moritz Rook, Jeroen |
| Author_xml | – sequence: 1 givenname: Moritz surname: Vinzent Seiler fullname: Vinzent Seiler, Moritz email: moritz.seiler@uni-muenster.de organization: University of Münster,Data Science: Statistics and Optimization,Münster,Germany – sequence: 2 givenname: Jeroen surname: Rook fullname: Rook, Jeroen email: j.g.rook@utwente.nl organization: University of Twente,Data Management and Biometrics,Enschede,Netherlands – sequence: 3 givenname: Jonathan surname: Heins fullname: Heins, Jonathan email: jonathan.heins@tu-dresden.de organization: TU Dresden,Big Data Analytics in Transportation,Dresden,Germany – sequence: 4 givenname: Oliver surname: Ludger Preub fullname: Ludger Preub, Oliver email: oliver.preuss@uni-muenster.de organization: University of Münster,Data Science: Statistics and Optimization,Münster,Germany – sequence: 5 givenname: Jakob surname: Bossek fullname: Bossek, Jakob email: bossek@aim.rwth-aachen.de organization: Aachen University,Chair for AI Methodology RWTH,Aachen,Germany – sequence: 6 givenname: Heike surname: Trautmann fullname: Trautmann, Heike email: trautmann@wi.uni-muenster.de organization: University of Münster,Data Science: Statistics and Optimization,Münster,Germany |
| BookMark | eNo1kM1KAzEUhaMoWGvfQDAvMDU3_1mWQetAweK065KZ3GkjbUYy48K3t6LC4TvwLc7i3JKr1Cck5AHYHIC5x7ouK8VBmjlnXMyBCcMZsxdk5owFrZUU7IxLMuHS8MIKzm_IbBjeGWOgQQsjJ2S9HWLa0zeMqetziydMI12hz-lHnxVdYy6qNIw-tUgXx32f43g40bJPXdx_Zj_GPtFzxgPSTb2-I9edPw44--sp2T4_bcqXYvW6rMrFqogAbixCYyFoFaRDMFwK3XWtbp1iSoFrbWuxaRgH5wMPwQmHIoBqZDDauiC9E1Ny_7sbEXH3kePJ56_d_wniG7qzUt0 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SSCI52147.2023.10372008 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781665430654 1665430656 |
| EISSN | 2472-8322 |
| EndPage | 368 |
| ExternalDocumentID | 10372008 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i119t-db81d65d49e172436ffc6c9505519c8c8ebb0219ad2dd939e3d15b4d7689d4a93 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:30:18 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-db81d65d49e172436ffc6c9505519c8c8ebb0219ad2dd939e3d15b4d7689d4a93 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10372008 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Dec.-5 |
| PublicationDateYYYYMMDD | 2023-12-05 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Symposium on Computational Intelligence in Multi-Criteria Decision Making |
| PublicationTitleAbbrev | SSCI |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001616374 ssib053788446 |
| Score | 1.8530594 |
| Snippet | Automated Algorithm Configuration (AAC) usually takes a global perspective: it identifies a parameter configuration for an (optimization) algorithm that... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 361 |
| SubjectTerms | Artificial neural networks Benchmark testing Computational modeling Deep Reinforcement Learning Measurement Optimization Per-Instance Algorithm Configuration Prediction algorithms Reinforcement learning Traveling Salesperson Problem |
| Title | Using Reinforcement Learning for Per-Instance Algorithm Configuration on the TSP |
| URI | https://ieeexplore.ieee.org/document/10372008 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmAqjyDe8sDqNKkfiUdUUdGlimiRulWxfSlB0FYh5fdjOwmIgQHJg-XBtvzQfWffdx9CdywCTZnISaTsbWJcFUQxGpGhjoUwTsLIFF5sIplO08VCZi1Z3XNhAMAHn0Hoqv4v32z0zj2VDRynbeipvftJkjRkre7wcJcYvfNtXhsoI2jC2piuOJKD2Ww04U6XJ3Sa4WHX2y9dFW9Wxv1_TugIBT8EPZx9m55jtAfrE9TvFBpwe2FPUeYjAvAT-Pyo2j8F4jal6grbJpxBRSYeItou799Wm6qsX96xG6dc7ZrjgW2xOBHPZ1mAnscP89EjaTUUSBnHsiZGWUAquGESLFRhVBSFFlpa3GOhm051CkpZMy9zMzRGUgnUxFwxY70QaVgu6RnqrTdrOEfYeYJ5buGLLBgDyB3eYspYE6-4LlJxgQK3QsttkyZj2S3O5R_tV-jQ7YOPDeHXqFdXO7hBB_qzLj-qW7-5X9s2o7M |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBT3VR8W3OXhNu48k3RylWFqsZbEVeiubZLauaFfWrb_fJLurePAg5BBySEIezDfJfPMhdEM9UCHlCfGkuU2UyZRIGnokUD7n2koY6dSJTfSn02ixEHFNVndcGABwwWfQtVX3l69ztbFPZT3LaQsctXebURr4FV2rOT7MpkZvvJuXCszwsE_rqC7fE73ZbDBmVpmna1XDu01_v5RVnGEZtv85pX3U-aHo4fjb-BygLVgfonaj0YDrK3uEYhcTgB_BZUhV7jEQ10lVV9g04RgKMnYg0XR5-7rKi6x8fsN2nGy1qQ4INsUgRTyfxR30NLybD0akVlEgme-LkmhpIClnmgowYIWGPE0VV8IgHwPeVKQikNIYepHoQGsRCgi1zyTVxg8RmiYiPEatdb6GE4StL5gkBsCIlFKAxCIuKrUx8pKpNOKnqGNXaPleJcpYNotz9kf7NdodzR8my8l4en-O9uyeuEgRdoFaZbGBS7SjPsvso7hyG_0FkIKm-g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Symposium+on+Computational+Intelligence+in+Multi-Criteria+Decision+Making&rft.atitle=Using+Reinforcement+Learning+for+Per-Instance+Algorithm+Configuration+on+the+TSP&rft.au=Vinzent+Seiler%2C+Moritz&rft.au=Rook%2C+Jeroen&rft.au=Heins%2C+Jonathan&rft.au=Ludger+Preub%2C+Oliver&rft.date=2023-12-05&rft.pub=IEEE&rft.eissn=2472-8322&rft.spage=361&rft.epage=368&rft_id=info:doi/10.1109%2FSSCI52147.2023.10372008&rft.externalDocID=10372008 |