PRKP: A Parallel Randomized Iterative Algorithm for Solving Linear Systems

This paper proposes a distributed-memory parallel randomized iterative algorithm for solving linear systems, called the parallel randomized kaczmarz projection (PRKP) algorithm. The algorithm has the property of greedy sampling, alternating projection, and lazy approximation. We derive the alternati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys) s. 244 - 249
Hlavní autori: Wang, Junjie, Tian, Min, Wang, Yinglong, He, Guoping, Liu, Tao
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2022
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a distributed-memory parallel randomized iterative algorithm for solving linear systems, called the parallel randomized kaczmarz projection (PRKP) algorithm. The algorithm has the property of greedy sampling, alternating projection, and lazy approximation. We derive the alternating projection process from the Randomized Kaczmarz algorithm and develop the greedy sampling and lazy approximation process to improve the convergence rate and reduce the per-process communication volume. Moreover, we develop a sampling residual estimation scheme for our proposed algorithm, which greatly reduces the extra computation cost required to obtain residuals. Our experimental results show that the proposed algorithm significantly outperforms previous parallel iterative algorithms on overdetermined linear systems, and yields up to \mathbf{159}\times and \mathbf{384}\times speedups on average respectively compared to the leading pipelined CG and pipelined GMRES algorithms.
AbstractList This paper proposes a distributed-memory parallel randomized iterative algorithm for solving linear systems, called the parallel randomized kaczmarz projection (PRKP) algorithm. The algorithm has the property of greedy sampling, alternating projection, and lazy approximation. We derive the alternating projection process from the Randomized Kaczmarz algorithm and develop the greedy sampling and lazy approximation process to improve the convergence rate and reduce the per-process communication volume. Moreover, we develop a sampling residual estimation scheme for our proposed algorithm, which greatly reduces the extra computation cost required to obtain residuals. Our experimental results show that the proposed algorithm significantly outperforms previous parallel iterative algorithms on overdetermined linear systems, and yields up to \mathbf{159}\times and \mathbf{384}\times speedups on average respectively compared to the leading pipelined CG and pipelined GMRES algorithms.
Author Tian, Min
Wang, Yinglong
He, Guoping
Liu, Tao
Wang, Junjie
Author_xml – sequence: 1
  givenname: Junjie
  surname: Wang
  fullname: Wang, Junjie
  email: 10431200760@stu.qlu.edu.cn
  organization: School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences),Jinan,China
– sequence: 2
  givenname: Min
  surname: Tian
  fullname: Tian, Min
  email: tianm@sdas.org
  organization: Qilu University of Technology (Shandong Academy of Sciences),Shandong Computer Science Center (National Supercomputer Center in Jinan),Jinan,China
– sequence: 3
  givenname: Yinglong
  surname: Wang
  fullname: Wang, Yinglong
  email: wangyl@sdas.org
  organization: Qilu University of Technology (Shandong Academy of Sciences),Shandong Computer Science Center (National Supercomputer Center in Jinan),Jinan,China
– sequence: 4
  givenname: Guoping
  surname: He
  fullname: He, Guoping
  email: hegp@sdas.org
  organization: Qilu University of Technology (Shandong Academy of Sciences),Shandong Computer Science Center (National Supercomputer Center in Jinan),Jinan,China
– sequence: 5
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  email: liutao@sdas.org
  organization: Qilu University of Technology (Shandong Academy of Sciences),Shandong Computer Science Center (National Supercomputer Center in Jinan),Jinan,China
BookMark eNotj91KwzAYQCPohc69gRd5gc4vTZou3o1O3bRgWfV6fG2-zEB_RhsG9ekt6NXh3Bw4d-y66ztiTAlYCQHmcVdkWbQty6hscQiZD1O0pTN1tpzGJIVUrWKI4xUAaHXFliY1a5mAFMZIdcveisN78cQ3vMABm4YafsDO9q3_Icv3gQYM_kJ805z6wYfvlrt-4GXfXHx34rnvCGedxkDteM9uHDYjLf-5YF8vz5_ZLso_XvfZJo-8ECZEFmSNqGRcuUSrWiqVauO0cK5WqlaJScAiKNRgK4xBkNZoE4mGUnAaKrlgD39dT0TH8-Dn7-koYF5dx1L-AqK7UwQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00064
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350319934
EndPage 249
ExternalDocumentID 10074823
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62002186
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-d03caa432bf564c344769f61ffc44c45950da04a60dba201e66ad53a9e70f60b3
IEDL.DBID RIE
IngestDate Wed Aug 27 03:04:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-d03caa432bf564c344769f61ffc44c45950da04a60dba201e66ad53a9e70f60b3
PageCount 6
ParticipantIDs ieee_primary_10074823
PublicationCentury 2000
PublicationDate 2022-Dec.
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.
PublicationDecade 2020
PublicationTitle 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys)
PublicationTitleAbbrev HPCC-DSS-SMARTCITY-DEPENDSYS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8439534
Snippet This paper proposes a distributed-memory parallel randomized iterative algorithm for solving linear systems, called the parallel randomized kaczmarz projection...
SourceID ieee
SourceType Publisher
StartPage 244
SubjectTerms alternating projection
Approximation algorithms
Costs
distributed memory systems
Estimation
Iterative algorithms
Linear systems
overdetermined linear systems
parallel algorithms
parallel iterative methods
Processor scheduling
randomized projection
Scheduling
Title PRKP: A Parallel Randomized Iterative Algorithm for Solving Linear Systems
URI https://ieeexplore.ieee.org/document/10074823
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uiHhSceI3OXiNa5s0bb2NzjEVRlkVdhv51MLWjtoJ-tebZPXj4sFbCATCS8j7vffyfj8ArmIhlVSRCUtCESIiNEPMDyViHvcNYMec-tKJTUSTSTybJVnbrO56YZRS7vOZurZDV8uXlVjbVFnfVvRJHOAO6EQR3TRr7QDS8mb2x1maomGeo3xpzJ4aFIuGTkk2fzfuxyw14WDg-Dktv8AvMRXnS0Z7_9zFPuj9dOXB7NvfHIAtVR6C-2z6kN3AAcxYbWVRFnDKSlktiw8l4Z2jTDbvGRwsnqu6aF6W0IBUmFcLm0eAJhA1Fx22rOU98DS6fUzHqNVHQIXvJw2SHhaMERxwHVIiLHcfTTT1tRaECBImoSeZRxj1JGfG0StKmQwxS8zZaOpxfAS6ZVWqYwC5FhxzA44MHiPap7Em2NMkiQNJKBb4BPSsIearDQXG_MsGp3_Mn4Fda-vNv49z0G3qtboA2-KtKV7rS3dwn5QNm5E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86RT2pOPHbHLzGtU2atd5G59jcHGWd4G2k-dDC1krtBP3rTbL6cfHgLQQC4SXk_d57eb8fAFcBF1LItg5LfO4jwhVDzPUFYk7qasCOU-oKKzbRHo-Dx8cwrpvVbS-MlNJ-PpPXZmhr-aLgS5Mqa5mKPgk8vA42fEI8Z9WutQVIzZzZ6sdRhLpJgpKFNnykcSzqWi3Z5F07IL1YB4SeZeg0DAO_5FSsN-nt_nMfe6D505cH42-Psw_WZH4A7uLJML6BHRiz0gijzOGE5aJYZB9SwIElTdYvGuzMn4oyq54XUMNUmBRzk0mAOhTVVx3WvOVN8NC7nUZ9VCskoMx1wwoJB3PGCPZS5VPCDXsfDRV1leKEcOKHviOYQxh1RMq0q5eUMuFjFurTUdRJ8SFo5EUujwBMFU9xquGRRmREuTRQBDuKhIEnCMUcH4OmMcTsZUWCMfuywckf85dguz-9H81Gg_HwFOwYu69-gZyBRlUu5TnY5G9V9lpe2EP8BNs2ntg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+24th+Int+Conf+on+High+Performance+Computing+%26+Communications%3B+8th+Int+Conf+on+Data+Science+%26+Systems%3B+20th+Int+Conf+on+Smart+City%3B+8th+Int+Conf+on+Dependability+in+Sensor%2C+Cloud+%26+Big+Data+Systems+%26+Application+%28HPCC%2FDSS%2FSmartCity%2FDependSys%29&rft.atitle=PRKP%3A+A+Parallel+Randomized+Iterative+Algorithm+for+Solving+Linear+Systems&rft.au=Wang%2C+Junjie&rft.au=Tian%2C+Min&rft.au=Wang%2C+Yinglong&rft.au=He%2C+Guoping&rft.date=2022-12-01&rft.pub=IEEE&rft.spage=244&rft.epage=249&rft_id=info:doi/10.1109%2FHPCC-DSS-SmartCity-DependSys57074.2022.00064&rft.externalDocID=10074823