Computer Algebra for unified integrals involving a multivariate Mittag-Leffler function

Recently many authors [1] -[3] have discussed a study of heat, mass transfer, the impact of heat generation/absorption with ramp velocity, ramp temperature on magnetohydrodynamic (MHD) time-dependent Maxwell fluid over an unbounded plate embedded in an absorbent medium, the behavior of convective bo...

Full description

Saved in:
Bibliographic Details
Published in:2023 International Conference on Fractional Differentiation and Its Applications (ICFDA) pp. 1 - 5
Main Authors: Singh, Prakash, Jain, Shilpi, Agarwal, Praveen
Format: Conference Proceeding
Language:English
Published: IEEE 14.03.2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently many authors [1] -[3] have discussed a study of heat, mass transfer, the impact of heat generation/absorption with ramp velocity, ramp temperature on magnetohydrodynamic (MHD) time-dependent Maxwell fluid over an unbounded plate embedded in an absorbent medium, the behavior of convective boundary conditions in the presence of radiation, chemical reaction, and hydro-magnetic forces in three-dimensional Powell-Eyring nanofluids by using the computer algebra. In this paper, we presented computer algebra for generalized integral formulas involving a multivariate generalized Mittag-Leffler function. These functions are expressed in terms of the generalized Lauricella series related to Srivastava and Daoust [9, p. 454]. We obtained a graphical representation of the results of Jain, S. [6] via Matlab by changing the basic parameters of the integrand.
DOI:10.1109/ICFDA58234.2023.10153242