Computer Algebra for unified integrals involving a multivariate Mittag-Leffler function
Recently many authors [1] -[3] have discussed a study of heat, mass transfer, the impact of heat generation/absorption with ramp velocity, ramp temperature on magnetohydrodynamic (MHD) time-dependent Maxwell fluid over an unbounded plate embedded in an absorbent medium, the behavior of convective bo...
Uloženo v:
| Vydáno v: | 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
14.03.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Recently many authors [1] -[3] have discussed a study of heat, mass transfer, the impact of heat generation/absorption with ramp velocity, ramp temperature on magnetohydrodynamic (MHD) time-dependent Maxwell fluid over an unbounded plate embedded in an absorbent medium, the behavior of convective boundary conditions in the presence of radiation, chemical reaction, and hydro-magnetic forces in three-dimensional Powell-Eyring nanofluids by using the computer algebra. In this paper, we presented computer algebra for generalized integral formulas involving a multivariate generalized Mittag-Leffler function. These functions are expressed in terms of the generalized Lauricella series related to Srivastava and Daoust [9, p. 454]. We obtained a graphical representation of the results of Jain, S. [6] via Matlab by changing the basic parameters of the integrand. |
|---|---|
| DOI: | 10.1109/ICFDA58234.2023.10153242 |