A Gradient-Based Adaptive Quantum-behaved Particle Swarm Optimization

Based on the quantum-behaved particle swarm optimization and gradient-based methods, an improved particle swarm optimization algorithm is proposed. In this modified particle swarm algorithm, particles alternate between utilizing quantum behavior and gradient information to optimize parameters. The a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE) s. 37 - 43
Hlavní autoři: Mei, Hao, Zhang, Jingjing, Wang, Qingchun, Wu, Yuchun, Guo, Guoping
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.03.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Based on the quantum-behaved particle swarm optimization and gradient-based methods, an improved particle swarm optimization algorithm is proposed. In this modified particle swarm algorithm, particles alternate between utilizing quantum behavior and gradient information to optimize parameters. The algorithm also incorporates local random search to enhance the search ability. Tests on some benchmark functions across various dimensions demonstrates its strong global search capabilities and precision. The experimental results indicate promising prospects for the application of this algorithm.
DOI:10.1109/ICAACE61206.2024.10548727