A Gradient-Based Adaptive Quantum-behaved Particle Swarm Optimization

Based on the quantum-behaved particle swarm optimization and gradient-based methods, an improved particle swarm optimization algorithm is proposed. In this modified particle swarm algorithm, particles alternate between utilizing quantum behavior and gradient information to optimize parameters. The a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE) s. 37 - 43
Hlavní autoři: Mei, Hao, Zhang, Jingjing, Wang, Qingchun, Wu, Yuchun, Guo, Guoping
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.03.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Based on the quantum-behaved particle swarm optimization and gradient-based methods, an improved particle swarm optimization algorithm is proposed. In this modified particle swarm algorithm, particles alternate between utilizing quantum behavior and gradient information to optimize parameters. The algorithm also incorporates local random search to enhance the search ability. Tests on some benchmark functions across various dimensions demonstrates its strong global search capabilities and precision. The experimental results indicate promising prospects for the application of this algorithm.
AbstractList Based on the quantum-behaved particle swarm optimization and gradient-based methods, an improved particle swarm optimization algorithm is proposed. In this modified particle swarm algorithm, particles alternate between utilizing quantum behavior and gradient information to optimize parameters. The algorithm also incorporates local random search to enhance the search ability. Tests on some benchmark functions across various dimensions demonstrates its strong global search capabilities and precision. The experimental results indicate promising prospects for the application of this algorithm.
Author Zhang, Jingjing
Wang, Qingchun
Mei, Hao
Wu, Yuchun
Guo, Guoping
Author_xml – sequence: 1
  givenname: Hao
  surname: Mei
  fullname: Mei, Hao
  email: wa21201022@stu.ahu.edu.cn
  organization: Anhui University,AHU-IAI AI Joint Laboratory,Hefei,Anhui,China
– sequence: 2
  givenname: Jingjing
  surname: Zhang
  fullname: Zhang, Jingjing
  email: fannyzjj@ahu.edu.cn
  organization: School of Electrical Engineering and Automation, Anhui University,Hefei,Anhui,China
– sequence: 3
  givenname: Qingchun
  surname: Wang
  fullname: Wang, Qingchun
  email: qingchun720@ustc.edu.cn
  organization: Institute of Artificial Intelligence,Hefei Comprehensive National Science Center,Hefei,Anhui,China
– sequence: 4
  givenname: Yuchun
  surname: Wu
  fullname: Wu, Yuchun
  email: wuyuchun@ustc.edu.cn
  organization: Institute of Artificial Intelligence,Hefei Comprehensive National Science Center,Hefei,Anhui,China
– sequence: 5
  givenname: Guoping
  surname: Guo
  fullname: Guo, Guoping
  email: gpguo@ustc.edu.cn
  organization: Institute of Artificial Intelligence,Hefei Comprehensive National Science Center,Hefei,Anhui,China
BookMark eNo1j81Kw0AUhUfQhda-gYv4AIlz53-WMcQqFKqo63JncoMDTVrSaUWf3oK6OovzcfjOFTsftyMxdgu8AuD-7qmp66Y1ILipBBeqAq6Vs8Kesbm33knNpQGl9CVr62IxYZdozOU97qkr6g53OR2peDngmA9DGegDj6fiGaec4oaK10-chmJ1oob0jTltx2t20eNmT_O_nLH3h_ateSyXq8VJZlkmAJ_LGACiitpZiL6TMZDrhdbRBYwc0EqvrCSyKDrvg49gXXSx74JxovfGyBm7-d1NRLTeTWnA6Wv9_07-AHfFSrA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAACE61206.2024.10548727
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350361445
EndPage 43
ExternalDocumentID 10548727
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 22303022,12034018
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-cb11c4c5871c9d3cbe8f255c8bac01a739473ee7a2d99b9c178c8cfdb682f9663
IEDL.DBID RIE
IngestDate Wed Jul 03 05:40:18 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-cb11c4c5871c9d3cbe8f255c8bac01a739473ee7a2d99b9c178c8cfdb682f9663
PageCount 7
ParticipantIDs ieee_primary_10548727
PublicationCentury 2000
PublicationDate 2024-March-1
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-1
  day: 01
PublicationDecade 2020
PublicationTitle 2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE)
PublicationTitleAbbrev ICAACE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8619034
Snippet Based on the quantum-behaved particle swarm optimization and gradient-based methods, an improved particle swarm optimization algorithm is proposed. In this...
SourceID ieee
SourceType Publisher
StartPage 37
SubjectTerms Costs
gradient
Gradient methods
Heuristic algorithms
optimization
particle
Performance evaluation
Robustness
Scalability
Sociology
swarm
Title A Gradient-Based Adaptive Quantum-behaved Particle Swarm Optimization
URI https://ieeexplore.ieee.org/document/10548727
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sEfGkYsU3EbymdjdpkxzX0qogtaJCbyWZZKGHPlh39e-bpFvFgwdvIQmETB6TmXzfDMC1dP4Nm6qAVEsU5S4X1EjOKLcda1lXpd08hsx_FKORnEzUuCarRy6Mcy6Cz1w7FONfvl1iFVxl_oSH93UqGtAQorcma-3AVR038-ahn2X9gVfZnYA9SHl70_9X5pSoOIZ7_xxyH1o_FDwy_lYuB7DlFocwyMhdETFaJb316seSzOpVuLDIc-VFVM1ppN37hnG9JcjLpy7m5Mn3mteUyxa8DQev_Xta50GgsyRRJUWTJMix620bVJahcTL3lgBKo7GTaMEUF8w5oVOrlFGYCIkSc2v8KuTenGFH0FwsF-4YCDIefAgcba650sJoKUzP39cm9bYN4yfQCjKYrtahLqab6Z_-UX8Gu0HSa1DWOTTLonIXsI0f5ey9uIwL9AVWXZKT
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oGvWkRgy-a-K1yG6LbY8rASEiYsSEG-lrEw48su7q37cti8aDB29NH2k6fUyn_b4ZgBtu3R02Fh6pFglMbcqw4pRgahrGkKaIm2lwmd9ngwEfj8WwJKsHLoy1NoDPbN0nw1--WejCP5W5He7v1zHbhC0fOquka-3Adek587bXSpJW2ynthkcfxLS-bvErdkpQHZ39f3Z6ANUfEh4afquXQ9iw8yNoJ-ghCyitHN87BWRQYuTSH1nopXBCKmY4EO9dwbBcFOj1U2Yz9OxqzUrSZRXeOu1Rq4vLSAh4GkUix1pFkaa66awbLQzRyvLU2QKaK6kbkWREUEasZTI2QiihI8Y116lRbh5SZ9CQY6jMF3NbA6QJ9a8IVJtUUiGZkpypO3diq9hZN4SeQNXLYLJcObuYrId_-kf-Fex2R0_9Sb83eDyDPS_1FUTrHCp5VtgL2NYf-fQ9uwyT9QUqCZXc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+7th+International+Conference+on+Advanced+Algorithms+and+Control+Engineering+%28ICAACE%29&rft.atitle=A+Gradient-Based+Adaptive+Quantum-behaved+Particle+Swarm+Optimization&rft.au=Mei%2C+Hao&rft.au=Zhang%2C+Jingjing&rft.au=Wang%2C+Qingchun&rft.au=Wu%2C+Yuchun&rft.date=2024-03-01&rft.pub=IEEE&rft.spage=37&rft.epage=43&rft_id=info:doi/10.1109%2FICAACE61206.2024.10548727&rft.externalDocID=10548727