Automatic Eyeblink Artifact Removal from Single Channel EEG Signals Using One-Dimensional Convolutional Denoising Autoencoder

Eyeblink artifacts are common and significant disruption that occurs when the subject blinks during the recording of the Electroencephalogram (EEG) signals. Removing this artifact is essential to ensure the precision and reliability of the recorded brain activity. Compared to multichannel EEG system...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Computer, Electrical & Communication Engineering (Online) s. 1 - 7
Hlavní autoři: Acharjee, Raktim, Ahamed, Shaik Rafi
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 02.02.2024
Témata:
ISSN:2768-0576
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Eyeblink artifacts are common and significant disruption that occurs when the subject blinks during the recording of the Electroencephalogram (EEG) signals. Removing this artifact is essential to ensure the precision and reliability of the recorded brain activity. Compared to multichannel EEG systems, the limited spatial resolution of single channel EEG makes it more challenging to identify and eliminate eyeblink artifacts. In this work, we proposed a one-dimensional Convolutional Denoising Autoencoder (CDAE) architecture to efficiently remove the eyeblink artifacts from the single channel EEG signals. The publicly available "EEGdenoiseNet" dataset was used to synthetically generate the eyeblink-contaminated noisy EEG signals which were fed to the encoder to generate a compressed representation and capture essential features. From there, the decoder reconstructed the clean EEG signal. We calculated the Relative Root Mean Square Error (RRMSE) and Correlation Coefficient (CC) to assess the effectiveness of our proposed method and achieved an RRMSE of 35.4% and CC of 0.92. Our proposed method efficiently removes eyeblink artifacts from the single channel EEG signal and performs better in terms of CC compared to any other state-of-the-art method.
AbstractList Eyeblink artifacts are common and significant disruption that occurs when the subject blinks during the recording of the Electroencephalogram (EEG) signals. Removing this artifact is essential to ensure the precision and reliability of the recorded brain activity. Compared to multichannel EEG systems, the limited spatial resolution of single channel EEG makes it more challenging to identify and eliminate eyeblink artifacts. In this work, we proposed a one-dimensional Convolutional Denoising Autoencoder (CDAE) architecture to efficiently remove the eyeblink artifacts from the single channel EEG signals. The publicly available "EEGdenoiseNet" dataset was used to synthetically generate the eyeblink-contaminated noisy EEG signals which were fed to the encoder to generate a compressed representation and capture essential features. From there, the decoder reconstructed the clean EEG signal. We calculated the Relative Root Mean Square Error (RRMSE) and Correlation Coefficient (CC) to assess the effectiveness of our proposed method and achieved an RRMSE of 35.4% and CC of 0.92. Our proposed method efficiently removes eyeblink artifacts from the single channel EEG signal and performs better in terms of CC compared to any other state-of-the-art method.
Author Acharjee, Raktim
Ahamed, Shaik Rafi
Author_xml – sequence: 1
  givenname: Raktim
  surname: Acharjee
  fullname: Acharjee, Raktim
  email: a.raktim@iitg.ac.in
  organization: Indian Institute of Technology Guwahati,Dept. of Electronics and Electrical Engineering,Guwahati,Assam,India
– sequence: 2
  givenname: Shaik Rafi
  surname: Ahamed
  fullname: Ahamed, Shaik Rafi
  email: rafiahamed@iitg.ac.in
  organization: Indian Institute of Technology Guwahati,Dept. of Electronics and Electrical Engineering,Guwahati,Assam,India
BookMark eNo1UN1KwzAYjaLgnHsDL-IDdH5Jmja5HF2dg8FA3fVIui8z2ibSdsIufHer06vD-eEcONfkIsSAhNwxmDIG-n5ZFGVRSpWlcsqBp1MGqc65hjMy0blWQoIYzFyfkxHPM5WAzLMrMum6NwAQHFKmxYh8zQ59bEzvK1oe0dY-vNNZ23tnqp4-YRM_TU1dGxv67MO-Rlq8mhCwpmW5GKR9MHVHN93g0XXAZO4bDJ2Pg0yLGD5jfehPbI4h-t_czyKGKu6wvSGXbijAyR-OyeahfCkek9V6sSxmq8Qzpvuk0nmFiu2EQaesZJJb4IrBjjshUVpWKeWkUMoKhEykJrPo3A455hYzsGJMbk-9HhG3H61vTHvc_j8mvgENH2T_
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCECE58645.2024.10497290
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350386479
EISSN 2768-0576
EndPage 7
ExternalDocumentID 10497290
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-c97ce81d3aef8b5152b02810d2f35e5b1c88f5388b3e0634a6beffde2e7be60b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:09:32 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-c97ce81d3aef8b5152b02810d2f35e5b1c88f5388b3e0634a6beffde2e7be60b3
PageCount 7
ParticipantIDs ieee_primary_10497290
PublicationCentury 2000
PublicationDate 2024-Feb.-2
PublicationDateYYYYMMDD 2024-02-02
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb.-2
  day: 02
PublicationDecade 2020
PublicationTitle International Conference on Computer, Electrical & Communication Engineering (Online)
PublicationTitleAbbrev ICCECE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204193
Score 1.8596944
Snippet Eyeblink artifacts are common and significant disruption that occurs when the subject blinks during the recording of the Electroencephalogram (EEG) signals....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Automatic Artifact Removal
Brain modeling
Brain-Computer Interface (BCI)
Convolution
Convolutional Denoising Autoencoder
Correlation coefficient
Decoding
Electroencephalogram (EEG)
Electroencephalography
Eyeblink Artifact
Noise reduction
Single Channel EEG
Training
Title Automatic Eyeblink Artifact Removal from Single Channel EEG Signals Using One-Dimensional Convolutional Denoising Autoencoder
URI https://ieeexplore.ieee.org/document/10497290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagQogJEEW8ZSTWlCTOwxmrNAWWUvGQulWxfUEVJUElrcTAf-fOTYsYGNgcKydb9tl3tu_7jrErpYUOpZEUNkiQHK0dGYbagTwRnlFEGGNssol4MJCjUTJswOoWCwMANvgMOlS0b_mm0nO6KsMVHqBsgif0zTiOl2Ct9YWK8N0AvZFtdtnwaF7fpWmWZqGMghAPgn7QWcn_yqRiDUl_959d2GPtH0geH66NzT7bgPKAfXXndWU5V3n2SeHe5SvvoioQWoE_wFuFasQJQMIfUWgKnLAEJUx5lt1g1QtxJ3MbNMDvS3B6xPS_ZOng2Oyi0Ur86kFZTex_1CJxXxqYtdlzP3tKb50mn4Iz8bykdnQSa0D_VORQSIWOjK_Qu_Bc4xcihFB5WsoCN0CpBKDnEuSRgqIw4EOsIHKVOGStsirhiHG0dyqSUaJAQoDLOJc-GCwEkTEicYtj1qaxG78vKTPGq2E7-aP-lO3QDNlwaP-MterZHM7Zll7Uk4_ZhZ3obz-kq0Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6MGvWkRoy_rYnX4bZ2ozuSMYSISBQTboS2b4aIm8FB4sH_3dcyMB48eOuadV3a172v3fu-R8i1VEwFQgsTNmgoOUo5IgiUA6OIeVoawRhtk03Uul0xGES9kqxuuTAAYIPPoGqK9l--ztXMHJXhCufYNsId-kbAue8t6FqrIxXmuxzxyBa5KpU0b9pxnMRJIEIe4FbQ59XlE37lUrGupLn7z5fYI5UfUh7trdzNPlmD7IB81WdFblVXafJpAr6zV1pHYzB8BfoIbzkaEjUUEvqEjSZADZsggwlNklusejHqydSGDdCHDJyG0fpf6HRQ7HZe2iVeNSDLx_Y-06NRv9QwrZDnZtKPW06ZUcEZe15UOCqqKUCEykaQColQxpeILzxX-ykLIJCeEiLFT6CQDBC78FEoIU01-FCTELqSHZL1LM_giFD0eDIUYSRBAMeFPBI-aCzwUGsWuekxqZixG74vRDOGy2E7-aP-kmy3-vedYafdvTslO2a2bHC0f0bWi-kMzsmmmhfjj-mFnfRvU66uiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Computer%2C+Electrical+%26+Communication+Engineering+%28Online%29&rft.atitle=Automatic+Eyeblink+Artifact+Removal+from+Single+Channel+EEG+Signals+Using+One-Dimensional+Convolutional+Denoising+Autoencoder&rft.au=Acharjee%2C+Raktim&rft.au=Ahamed%2C+Shaik+Rafi&rft.date=2024-02-02&rft.pub=IEEE&rft.eissn=2768-0576&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FICCECE58645.2024.10497290&rft.externalDocID=10497290