A Learning Approach to Multi-robot Task Allocation with Priority Constraints and Uncertainty
Multi-robot task allocation has an important impact on the efficiency of multi-robot collaboration. For single-shot allocation without complicated constraints, some exact algorithms and heuristic algorithms can find the optimal solution efficiently. However, considering the priority constraints and...
Uloženo v:
| Vydáno v: | 2022 IEEE International Conference on Industrial Technology (ICIT) s. 1 - 8 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
22.08.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Multi-robot task allocation has an important impact on the efficiency of multi-robot collaboration. For single-shot allocation without complicated constraints, some exact algorithms and heuristic algorithms can find the optimal solution efficiently. However, considering the priority constraints and uncertain execution time of robots for multiple times of allocation in an approximate dynamic programming environment, traditional methods such as heuristic algorithms have limited performance. To obtain better performance, we propose a method based on deep reinforcement learning. Specifically, we first use the directed acyclic graph to describe the priority relationship between tasks. Then we propose a graph neural network with a hierarchical attention mechanism to extract the characteristics of the task groups. Finally, we design the policy network to solve the approximate dynamic programming problem of multi-robot task allocation. Through training on the dataset of a given environment, the policy network can gradually refine the decision-making process by reinforcement learning. Experiment results show that the proposed modeling and solving method can find better solutions than existing heuristic algorithms. Furthermore, the learned strategy can be directly applied in other untrained environments with superior performance. |
|---|---|
| AbstractList | Multi-robot task allocation has an important impact on the efficiency of multi-robot collaboration. For single-shot allocation without complicated constraints, some exact algorithms and heuristic algorithms can find the optimal solution efficiently. However, considering the priority constraints and uncertain execution time of robots for multiple times of allocation in an approximate dynamic programming environment, traditional methods such as heuristic algorithms have limited performance. To obtain better performance, we propose a method based on deep reinforcement learning. Specifically, we first use the directed acyclic graph to describe the priority relationship between tasks. Then we propose a graph neural network with a hierarchical attention mechanism to extract the characteristics of the task groups. Finally, we design the policy network to solve the approximate dynamic programming problem of multi-robot task allocation. Through training on the dataset of a given environment, the policy network can gradually refine the decision-making process by reinforcement learning. Experiment results show that the proposed modeling and solving method can find better solutions than existing heuristic algorithms. Furthermore, the learned strategy can be directly applied in other untrained environments with superior performance. |
| Author | Deng, Fuqin Fu, Lanhui Zhang, Jianmin Lam, Tin Lun Yue, Hongwei Huang, Huanzhao Wu, Zexiao |
| Author_xml | – sequence: 1 givenname: Fuqin surname: Deng fullname: Deng, Fuqin organization: Wuyi University,School of Intelligent Manufacturing,Jiangmen,Guangdong,China,529020 – sequence: 2 givenname: Huanzhao surname: Huang fullname: Huang, Huanzhao organization: Wuyi University,School of Intelligent Manufacturing,Jiangmen,Guangdong,China,529020 – sequence: 3 givenname: Lanhui surname: Fu fullname: Fu, Lanhui organization: Wuyi University,School of Intelligent Manufacturing,Jiangmen,Guangdong,China,529020 – sequence: 4 givenname: Hongwei surname: Yue fullname: Yue, Hongwei organization: Wuyi University,School of Intelligent Manufacturing,Jiangmen,Guangdong,China,529020 – sequence: 5 givenname: Jianmin surname: Zhang fullname: Zhang, Jianmin email: zjm99_2001@126.com organization: Wuyi University,School of Intelligent Manufacturing,Jiangmen,Guangdong,China,529020 – sequence: 6 givenname: Zexiao surname: Wu fullname: Wu, Zexiao organization: The 3irobotix Co.,Ltd,Shenzhen,Guangdong,China,518000 – sequence: 7 givenname: Tin Lun surname: Lam fullname: Lam, Tin Lun email: tllam@cuhk.edu.cn organization: The Shenzhen Institute of Artificial Intelligence and Robotics for Society,Shenzhen,Guangdong,China,518000 |
| BookMark | eNo1j8tKxDAYRiPoQsd5A8G8QGsu7UyyLMVLoaKLzk4Y_tycYE1KGpG-vSOjq8O3OXznCp2HGCxCt5SUlBJ517XdUIkN4SUjjJWUEMIEqc_QWm4F3TJBqayEvERvDe4tpODDO26mKUXQB5wjfv4asy9SVDHjAeYP3Ixj1JB9DPjb5wN-TT4mnxfcxjDnBD7kGUMweBe0Tfl3L9fowsE42_UfV2j3cD-0T0X_8ti1TV_4441caMEBDBOMOWq1IbUTTDlnQVGpK9hoDZJrfQzjUANQ6TShTihrDFGV4XyFbk5eb63dT8l_Qlr2_9H8B6oTVBM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICIT48603.2022.10002805 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728119489 1728119480 |
| EndPage | 8 |
| ExternalDocumentID | 10002805 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shenzhen Peacock Plan funderid: 10.13039/501100012234 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-c83aad2822f1ecd05f82bffeab19c4a6cca93cc1103a5aa19fc01f8bedd0b4d33 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:13:56 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-c83aad2822f1ecd05f82bffeab19c4a6cca93cc1103a5aa19fc01f8bedd0b4d33 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10002805 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Aug.-22 |
| PublicationDateYYYYMMDD | 2022-08-22 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-Aug.-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE International Conference on Industrial Technology (ICIT) |
| PublicationTitleAbbrev | ICIT |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8119875 |
| Snippet | Multi-robot task allocation has an important impact on the efficiency of multi-robot collaboration. For single-shot allocation without complicated constraints,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Approximation algorithms Deep reinforcement learning Dynamic programming Graph neural network Graph neural networks Heuristic algorithms Multi-robot task allocation Reinforcement learning Training Uncertainty |
| Title | A Learning Approach to Multi-robot Task Allocation with Priority Constraints and Uncertainty |
| URI | https://ieeexplore.ieee.org/document/10002805 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aPHhSseI3OXhNu9lss8mxFIsFKT200INQJl9SlF1pU6H_3iTdKh48eAshJDBDeJPJvHkIPXAnBBMZI6XKDSm0AgIcDOFaMkmFda5IROHncjwW87mcNGT1xIWx1qbiM9uJw_SXb2q9iamyLk3JoNix9LAs-Y6s1dRs0Ux2R4PRNGoqsfDsy_POfvUv3ZQEG8OTfx54ito_BDw8-YaWM3Rgq3P00sdNN9RX3G9agWNf48ShJata1R5PYf2G--8RoaLFcUyzhp2WddSow1GdM2lC-DWGyuBZOCdVBPhtG82Gj9PBE2nEEciSUumJFgzAxCJQR602Wc-JXDlnQVGpC-DBM5JpHQzDoAdApdMZdUJZYzJVGMYuUKuqK3uJsBUmgDhAuM5QqIwLbUpOtZUh1stDeHOF2tE0i49d_4vF3irXf8zfoOPogJh5zfNb1PKrjb1DR_rTL9er--S1L5kenHM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1SBT2pWPHbHLym3STbbXIsxdJiLT1soQehTL6kKLvSbgX_vUm6Kh48eAshJDBDeJPJvHkI3WVOCC4STrqKGZJqBQQyMCTTkksqrHNpJAqPu5OJmM_ltCarRy6MtTYWn9lWGMa_fFPqTUiVtWlMBoWOpbudNGXJlq5VV23RRLZH_VEeVJW4f_gx1vpa_0s5JQLH4PCfRx6h5g8FD0-_weUY7djiBD31cN0P9Rn36mbguCpxZNGSVanKCuewfsG914BRweY4JFr9TssyqNThoM8ZVSGqNYbC4Jk_J9YEVB9NNBvc5_0hqeURyJJSWREtOIAJZaCOWm2SjhNMOWdBUalTyLxvJNfaG4ZDB4BKpxPqhLLGJCo1nJ-iRlEW9gxhK4yHcQB_oSFVSSa06WZUW-mjPeYDnHPUDKZZvG07YCy-rHLxx_wt2h_mj-PFeDR5uEQHwRkhD8vYFWpUq429Rnv6vVquVzfRg5_pPJ-6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Industrial+Technology+%28ICIT%29&rft.atitle=A+Learning+Approach+to+Multi-robot+Task+Allocation+with+Priority+Constraints+and+Uncertainty&rft.au=Deng%2C+Fuqin&rft.au=Huang%2C+Huanzhao&rft.au=Fu%2C+Lanhui&rft.au=Yue%2C+Hongwei&rft.date=2022-08-22&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FICIT48603.2022.10002805&rft.externalDocID=10002805 |