Finding Hamiltonian Cycles with Graph Neural Networks
We train a small message-passing graph neural network to predict Hamiltonian cycles on Erdos-Renyl random graphs in a critical regime. It outperforms existing hand-crafted heuristics after about 2.5 hours of training on a single GPU. Our findings encourage an alternative approach to solving computat...
Uložené v:
| Vydané v: | 2023 International Symposium on Image and Signal Processing and Analysis (ISPA) s. 1 - 6 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
18.09.2023
|
| Predmet: | |
| ISSN: | 1849-2266 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!