Modelling of Binary Coyote Optimization Algorithm with Deep Learning based Ground Water Index Classification

Groundwater quality fundamentally defines the utility of water in a source related to the nature and attention of the impurities present in the instance. An interaction influence of the uninterrupted decline in water quantity and quality, around one billion people globally face a lack of satisfactor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS) s. 428 - 433
Hlavní autoři: R, Soundharyaa Shri Harini, Amudha, V., Lakshmi, S. Vidhya
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 23.08.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Groundwater quality fundamentally defines the utility of water in a source related to the nature and attention of the impurities present in the instance. An interaction influence of the uninterrupted decline in water quantity and quality, around one billion people globally face a lack of satisfactory and safer water supply. The most effective technique for categorizing water quality is utilizing the Water Quality Index (WQI). Water quality can frequently be evaluated dependent on WQIs. A tool can be widely exploited for assessing the efficiency of water quality management algorithms. The study offers the modelling of Binary Coyote Optimization Algorithm with Deep Learning based Ground Water Index Classification (BCOADL-GWIC) technique. The presented BCOADL-GWIC technique classifies the WQI into different levels. To achieve this, the BCOADL-GWIC technique follows an initial stage of data normalization. In addition, the BCOADL-GWIC technique comprises BCOA based feature selection technique to generate a collection of feature vectors. For WQI classification, the BCOADL-GWIC technique uses gated recurrent unit (GRU) model. Finally, the experimental outcome of the BCOADL-GWIC method is tested on WQI dataset, collected from Thiruvallur district, India. The comprehensive results highlighted the outperforming results of the BCOADL-GWIC technique.
AbstractList Groundwater quality fundamentally defines the utility of water in a source related to the nature and attention of the impurities present in the instance. An interaction influence of the uninterrupted decline in water quantity and quality, around one billion people globally face a lack of satisfactory and safer water supply. The most effective technique for categorizing water quality is utilizing the Water Quality Index (WQI). Water quality can frequently be evaluated dependent on WQIs. A tool can be widely exploited for assessing the efficiency of water quality management algorithms. The study offers the modelling of Binary Coyote Optimization Algorithm with Deep Learning based Ground Water Index Classification (BCOADL-GWIC) technique. The presented BCOADL-GWIC technique classifies the WQI into different levels. To achieve this, the BCOADL-GWIC technique follows an initial stage of data normalization. In addition, the BCOADL-GWIC technique comprises BCOA based feature selection technique to generate a collection of feature vectors. For WQI classification, the BCOADL-GWIC technique uses gated recurrent unit (GRU) model. Finally, the experimental outcome of the BCOADL-GWIC method is tested on WQI dataset, collected from Thiruvallur district, India. The comprehensive results highlighted the outperforming results of the BCOADL-GWIC technique.
Author R, Soundharyaa Shri Harini
Amudha, V.
Lakshmi, S. Vidhya
Author_xml – sequence: 1
  givenname: Soundharyaa Shri Harini
  surname: R
  fullname: R, Soundharyaa Shri Harini
  email: soundharyaash2012.sse@saveetha.com
  organization: Saveetha School of Engineering(SIMATS),Department of Civil Engineering,Chennai,India
– sequence: 2
  givenname: V.
  surname: Amudha
  fullname: Amudha, V.
  email: amuthav.sse@saveetha.com
  organization: Saveetha School of Engineering(SIMATS),Department of ECE,Chennai,India
– sequence: 3
  givenname: S. Vidhya
  surname: Lakshmi
  fullname: Lakshmi, S. Vidhya
  email: vidhyalakshmis.sse@saveetha.com
  organization: Saveetha School of Engineering(SIMATS),Department of Civil Engineering,Chennai,India
BookMark eNo1UM1OwzAYCxIcYOwNOIQHaMlP0ybHUWBUKtphII5Tmn4ZkdqkaoNgPP3K38WWD7ZsX6BTHzwgdE1JSilRN1W5qrZbITNZpIwwnlLCBBFFfoKWqlCSC8KZKJQ6R91TaKHrnN_jYPGt83o84DIcQgS8GaLr3ZeOLni86vZhdPGtxx8z4juAAdegR_9tbfQELV6P4d23-FVHGHHlW_jEZaenyVlnfkIu0ZnV3QTLP16gl4f75_IxqTfruXOdOEpVTAxrCG1NMwvJBDc8M4IBUGkJV0pbpXMAYZRUlFDZZGCJNSZnkudKGMv4Al395joA2A2j6-dVu_8T-BE_KVjn
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAISS58487.2023.10250576
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350325799
EndPage 433
ExternalDocumentID 10250576
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-c2b01dcb1198253c34c52ee18f0399af9a6ee5c9891018b4ef0fcc6283695cf23
IEDL.DBID RIE
IngestDate Wed Sep 27 05:40:29 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-c2b01dcb1198253c34c52ee18f0399af9a6ee5c9891018b4ef0fcc6283695cf23
PageCount 6
ParticipantIDs ieee_primary_10250576
PublicationCentury 2000
PublicationDate 2023-Aug.-23
PublicationDateYYYYMMDD 2023-08-23
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-Aug.-23
  day: 23
PublicationDecade 2020
PublicationTitle 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS)
PublicationTitleAbbrev ICAISS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8421321
Snippet Groundwater quality fundamentally defines the utility of water in a source related to the nature and attention of the impurities present in the instance. An...
SourceID ieee
SourceType Publisher
StartPage 428
SubjectTerms Artificial intelligence
Binary Coyote Optimization Algorithm1
Classification algorithms
Data normalization
Deep learning
Feature extraction
Gated recurrent unit
Impurities
Indexes
Logic gates
Water quality
Water quality index
Title Modelling of Binary Coyote Optimization Algorithm with Deep Learning based Ground Water Index Classification
URI https://ieeexplore.ieee.org/document/10250576
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uiHhSceJvInjtbJu0aY5zOtxlDqa420heX-bAtWN2gv-9SdYpHjx4a0pJIOH1e3nJ932EXDOlOIOYBUyjDngW8UAxBoGOpRZMZqkS2ptNiMEgG4_lsCarey4MIvrLZ9h2j_4sPy9h5UplNsIdYIu0QRpCpGuy1g65qnUzb_rdTn80soiaibZzBW9vvv_lnOKBo7f3zyH3SeuHgkeH3-ByQLawOCRvzrnMi2jT0tBbT6Wl3fKzrJA-2tif16RK2nmblnbX_zqnrs5K7xAXtFZSnVIHXDl1Racipy8211zSvtNMpN4g010d8p20yHPv_qn7ENR2CcEsimQVQKzDKAdtG3bbx4BxSGLEKDOhzUKUkSpFTEBm0ql0aY4mNACpzS9SmYCJ2RFpFmWBx4QCGrtquf335DHPVaLAiFDGAm34Q8bhhLTcVE0Wa0WMyWaWTv94f0Z2baLB16WLc9Ksliu8INvwUc3el5d-Hb8ApySheg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFG0UjfqkRozf1sTX4dZ2H31ElLCISAJG30jb3SIJMILDxH9vW4bGBx9825Z0TXrTntvbnnMQuqZCMKoI9agE6bEkYJ6gVHmScBlTnkQils5sIu50ktdX3i3J6o4LAwDu8hnU7KM7y89ytbClMjPDLWDH0TraCBkj_pKutYWuSuXMm7RRT3s9g6lJXLO-4LVVi1_eKQ46mrv_7HQPVX9IeLj7DS_7aA2mB2hsvcucjDbONb51ZFrcyD_zAvCTmf2TklaJ6-Nhbvb9bxNsK634DmCGSy3VIbbQlWFbdppm-MVkm3OcWtVE7Cwy7eUh95Mqem7e9xstrzRM8EZBwAtPEekHmZLmxWz8qKJMhQQgSLRv8hChuYgAQsUTbnW6JAPta6Uik2FEPFSa0ENUmeZTOEJYgTZxy8zqkxGWiVAoHfucxGAWAJUwdYyqdqgGs6UmxmA1Sid_fL9E263-Y3vQTjsPp2jHBsdWZgk9Q5VivoBztKk-itH7_MLF9As6zqTM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+Second+International+Conference+on+Augmented+Intelligence+and+Sustainable+Systems+%28ICAISS%29&rft.atitle=Modelling+of+Binary+Coyote+Optimization+Algorithm+with+Deep+Learning+based+Ground+Water+Index+Classification&rft.au=R%2C+Soundharyaa+Shri+Harini&rft.au=Amudha%2C+V.&rft.au=Lakshmi%2C+S.+Vidhya&rft.date=2023-08-23&rft.pub=IEEE&rft.spage=428&rft.epage=433&rft_id=info:doi/10.1109%2FICAISS58487.2023.10250576&rft.externalDocID=10250576