Mixed- Precision Algorithm in Electromagnetic Finite Element Method
Single-precision algorithms are known to offer superior computational efficiency compared to double-precision algorithms. However, achieving the same level of computational accuracy as double-precision algorithms in single-precision arithmetic can be challenging. Mixed-precision algorithms have emer...
Uloženo v:
| Vydáno v: | 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China) s. 1 - 3 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Applied Computational Electromagnetics Society (ACES)
15.08.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Single-precision algorithms are known to offer superior computational efficiency compared to double-precision algorithms. However, achieving the same level of computational accuracy as double-precision algorithms in single-precision arithmetic can be challenging. Mixed-precision algorithms have emerged as a promising solution to this problem. In this study, we employ a mixed-precision algorithm to solve the matrix equation Ax=b generated by the electromagnetic finite element method. Specifically, single-precision arithmetic is utilized in the matrix factorization phase, whereas double-precision arithmetic is applied in the residual calculation and iterative refinement phase. Our experimental results demonstrate that the mixed-precision algorithm achieves computational efficiency that is approximately 1.5 times higher than that of the double-precision algorithm, and occupies 40% less memory. Additionally, the computational accuracy of the mixed-precision algorithm is found to meet the requirements of double-precision arithmetic. |
|---|---|
| AbstractList | Single-precision algorithms are known to offer superior computational efficiency compared to double-precision algorithms. However, achieving the same level of computational accuracy as double-precision algorithms in single-precision arithmetic can be challenging. Mixed-precision algorithms have emerged as a promising solution to this problem. In this study, we employ a mixed-precision algorithm to solve the matrix equation Ax=b generated by the electromagnetic finite element method. Specifically, single-precision arithmetic is utilized in the matrix factorization phase, whereas double-precision arithmetic is applied in the residual calculation and iterative refinement phase. Our experimental results demonstrate that the mixed-precision algorithm achieves computational efficiency that is approximately 1.5 times higher than that of the double-precision algorithm, and occupies 40% less memory. Additionally, the computational accuracy of the mixed-precision algorithm is found to meet the requirements of double-precision arithmetic. |
| Author | Hao-xiang, Wu Xi, Chen Sheng, Zuo Zhi-ming, Li |
| Author_xml | – sequence: 1 givenname: Li surname: Zhi-ming fullname: Zhi-ming, Li email: 18819268955@163.com organization: School of Electronic Engineering Xidian University,Xi'an,China – sequence: 2 givenname: Wu surname: Hao-xiang fullname: Hao-xiang, Wu email: xduwhx@outlook.com organization: School of Electronic Engineering Xidian University,Xi'an,China – sequence: 3 givenname: Zuo surname: Sheng fullname: Sheng, Zuo email: zuosheng0503@163.com organization: School of Electronic Engineering Xidian University,Xi'an,China – sequence: 4 givenname: Chen surname: Xi fullname: Xi, Chen email: chenxi@mail.xidian.edu.cn organization: School of Electronic Engineering Xidian University,Xi'an,China |
| BookMark | eNo1j01Lw0AUAFfQg9b-Aw978pa4X9nNO4aQqtCi0Houm81L8yDZSLoH_fci2tPAHAbmjl3HOSJjj1LkSoOEp6pu9lk9UPRWqBJyJZTOpVAGSuOu2BpcKZ3WhQBbuFtW7-gLu4y_LxjoTHPk1XiaF0rDxCnyZsSQlnnyp4iJAt9QpIS_esKY-A7TMHf37Kb34xnX_1yxj01zqF-y7dvza11tM5ISUhaUdU54dF0rAbzXxpfBFtYH17bQOwDTmU6CUr3EUOoAoUAtdNtaj6iNXrGHvy4h4vFzockv38fLm_4BsVRLwQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/ACES-China60289.2023.10249847 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781733509657 1733509658 |
| EndPage | 3 |
| ExternalDocumentID | 10249847 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: QTZX22160 funderid: 10.13039/501100012226 – fundername: Key Research and Development Program of Shaanxi grantid: 2023-ZDLGY-42,2022ZDLGY02-05,2021GXLH-02,2023-ZDLGY-09 funderid: 10.13039/501100013317 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-c26770ae7db199aa34a8c656ac7bb9f7994d4d1922f1ec83c9c5e303bb6aee343 |
| IEDL.DBID | RIE |
| IngestDate | Wed Sep 27 05:40:30 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-c26770ae7db199aa34a8c656ac7bb9f7994d4d1922f1ec83c9c5e303bb6aee343 |
| PageCount | 3 |
| ParticipantIDs | ieee_primary_10249847 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Aug.-15 |
| PublicationDateYYYYMMDD | 2023-08-15 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-Aug.-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China) |
| PublicationTitleAbbrev | ACES-CHINA |
| PublicationYear | 2023 |
| Publisher | Applied Computational Electromagnetics Society (ACES) |
| Publisher_xml | – name: Applied Computational Electromagnetics Society (ACES) |
| Score | 1.8412558 |
| Snippet | Single-precision algorithms are known to offer superior computational efficiency compared to double-precision algorithms. However, achieving the same level of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Approximation algorithms Computational efficiency Computational modeling Electromagnetic Finite Element method Finite element analysis Iterative methods Mathematical models Memory management mixed-precision algorithm Sparse matrix direct solver |
| Title | Mixed- Precision Algorithm in Electromagnetic Finite Element Method |
| URI | https://ieeexplore.ieee.org/document/10249847 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sEfGkYsU3OYi31KbJbpJjKS0ebCn4oLeSx2xd0K3UVvz5JmmrePDgLUxIQhImM5PJlw_gytnCGykyajgzVBTOU6MyQzNWKKdt4bL0genTnRwO1XisR2uwesLCIGJ6fIbNWEy5fD9zy3hVFjQ8BAvhOK1BTcp8Bdbagev0nFkzfdPp9u5p4p3OYwKtGanBm5tGv-hTkvXo7_1z3H1o_ODwyOjbwhzAFlaH0B2Un-hpqFjT45DOy3QWYvznV1JWpLfitXk10yriE0m_jF5lFMdByCAxRjfgsd976N7SNRUCLRnTC-rauZQtg9JbprUxXBjlgitmnLRWF1Jr4YUP3lq7YOgUd9plGKyTtblB5IIfQb2aVXgMhOXShV5Q2RYXyhvFc6asDHppJWJLnEAjrsDkbfXbxWQz-dM_5GewG9c53rOy7Bzqi_kSL2DbfSzK9_ll2qMvtIOVHw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oGvWkRoxv92C8FSnb3bZHQiAYgZCIhhvpYxY3kcUgGH--bQGNBw_emmnapm2mM9Pp1w_gxujMKs4SomKqCMuMJUokiiQ0E0bqzCThA9PnDu_1xHAo-yuwesDCIGJ4fIYVXwy5fDs1C39V5jTcBQvuON2ELU-dtYJr7cBteNAsqbyrN5qPJDBPpz6FVvHk4JV1s18EKsF-tPb_OfIBlH-QeFH_28YcwgYWR9Do5p9oiatYEeRE9dfx1EX5L5MoL6LmktlmosaFRyhGrdz7lV7sB4m6gTO6DE-t5qDRJisyBJJTKufE1FLOqwq51VRKpWKmhHHOmDJca5lxKZll1vlrtYyiEbGRJkFnn7ROFWLM4mMoFdMCTyCiKTeuFxS6GjNhlYhTKjR3mqk5YpWdQtmvwOht-d_FaD35sz_k17DbHnQ7o8597-Ec9vya-1tXmlxAaT5b4CVsm495_j67Cvv1BaqSmGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Applied+Computational+Electromagnetics+Society+Symposium+%28ACES-China%29&rft.atitle=Mixed-+Precision+Algorithm+in+Electromagnetic+Finite+Element+Method&rft.au=Zhi-ming%2C+Li&rft.au=Hao-xiang%2C+Wu&rft.au=Sheng%2C+Zuo&rft.au=Xi%2C+Chen&rft.date=2023-08-15&rft.pub=Applied+Computational+Electromagnetics+Society+%28ACES%29&rft.spage=1&rft.epage=3&rft_id=info:doi/10.23919%2FACES-China60289.2023.10249847&rft.externalDocID=10249847 |