Mixed- Precision Algorithm in Electromagnetic Finite Element Method
Single-precision algorithms are known to offer superior computational efficiency compared to double-precision algorithms. However, achieving the same level of computational accuracy as double-precision algorithms in single-precision arithmetic can be challenging. Mixed-precision algorithms have emer...
Gespeichert in:
| Veröffentlicht in: | 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China) S. 1 - 3 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
Applied Computational Electromagnetics Society (ACES)
15.08.2023
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Single-precision algorithms are known to offer superior computational efficiency compared to double-precision algorithms. However, achieving the same level of computational accuracy as double-precision algorithms in single-precision arithmetic can be challenging. Mixed-precision algorithms have emerged as a promising solution to this problem. In this study, we employ a mixed-precision algorithm to solve the matrix equation Ax=b generated by the electromagnetic finite element method. Specifically, single-precision arithmetic is utilized in the matrix factorization phase, whereas double-precision arithmetic is applied in the residual calculation and iterative refinement phase. Our experimental results demonstrate that the mixed-precision algorithm achieves computational efficiency that is approximately 1.5 times higher than that of the double-precision algorithm, and occupies 40% less memory. Additionally, the computational accuracy of the mixed-precision algorithm is found to meet the requirements of double-precision arithmetic. |
|---|---|
| AbstractList | Single-precision algorithms are known to offer superior computational efficiency compared to double-precision algorithms. However, achieving the same level of computational accuracy as double-precision algorithms in single-precision arithmetic can be challenging. Mixed-precision algorithms have emerged as a promising solution to this problem. In this study, we employ a mixed-precision algorithm to solve the matrix equation Ax=b generated by the electromagnetic finite element method. Specifically, single-precision arithmetic is utilized in the matrix factorization phase, whereas double-precision arithmetic is applied in the residual calculation and iterative refinement phase. Our experimental results demonstrate that the mixed-precision algorithm achieves computational efficiency that is approximately 1.5 times higher than that of the double-precision algorithm, and occupies 40% less memory. Additionally, the computational accuracy of the mixed-precision algorithm is found to meet the requirements of double-precision arithmetic. |
| Author | Hao-xiang, Wu Xi, Chen Sheng, Zuo Zhi-ming, Li |
| Author_xml | – sequence: 1 givenname: Li surname: Zhi-ming fullname: Zhi-ming, Li email: 18819268955@163.com organization: School of Electronic Engineering Xidian University,Xi'an,China – sequence: 2 givenname: Wu surname: Hao-xiang fullname: Hao-xiang, Wu email: xduwhx@outlook.com organization: School of Electronic Engineering Xidian University,Xi'an,China – sequence: 3 givenname: Zuo surname: Sheng fullname: Sheng, Zuo email: zuosheng0503@163.com organization: School of Electronic Engineering Xidian University,Xi'an,China – sequence: 4 givenname: Chen surname: Xi fullname: Xi, Chen email: chenxi@mail.xidian.edu.cn organization: School of Electronic Engineering Xidian University,Xi'an,China |
| BookMark | eNo1j01Lw0AUAFfQg9b-Aw978pa4X9nNO4aQqtCi0Houm81L8yDZSLoH_fci2tPAHAbmjl3HOSJjj1LkSoOEp6pu9lk9UPRWqBJyJZTOpVAGSuOu2BpcKZ3WhQBbuFtW7-gLu4y_LxjoTHPk1XiaF0rDxCnyZsSQlnnyp4iJAt9QpIS_esKY-A7TMHf37Kb34xnX_1yxj01zqF-y7dvza11tM5ISUhaUdU54dF0rAbzXxpfBFtYH17bQOwDTmU6CUr3EUOoAoUAtdNtaj6iNXrGHvy4h4vFzockv38fLm_4BsVRLwQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/ACES-China60289.2023.10249847 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781733509657 1733509658 |
| EndPage | 3 |
| ExternalDocumentID | 10249847 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: QTZX22160 funderid: 10.13039/501100012226 – fundername: Key Research and Development Program of Shaanxi grantid: 2023-ZDLGY-42,2022ZDLGY02-05,2021GXLH-02,2023-ZDLGY-09 funderid: 10.13039/501100013317 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-c26770ae7db199aa34a8c656ac7bb9f7994d4d1922f1ec83c9c5e303bb6aee343 |
| IEDL.DBID | RIE |
| IngestDate | Wed Sep 27 05:40:30 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-c26770ae7db199aa34a8c656ac7bb9f7994d4d1922f1ec83c9c5e303bb6aee343 |
| PageCount | 3 |
| ParticipantIDs | ieee_primary_10249847 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Aug.-15 |
| PublicationDateYYYYMMDD | 2023-08-15 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-Aug.-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China) |
| PublicationTitleAbbrev | ACES-CHINA |
| PublicationYear | 2023 |
| Publisher | Applied Computational Electromagnetics Society (ACES) |
| Publisher_xml | – name: Applied Computational Electromagnetics Society (ACES) |
| Score | 1.8413596 |
| Snippet | Single-precision algorithms are known to offer superior computational efficiency compared to double-precision algorithms. However, achieving the same level of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Approximation algorithms Computational efficiency Computational modeling Electromagnetic Finite Element method Finite element analysis Iterative methods Mathematical models Memory management mixed-precision algorithm Sparse matrix direct solver |
| Title | Mixed- Precision Algorithm in Electromagnetic Finite Element Method |
| URI | https://ieeexplore.ieee.org/document/10249847 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62iHhSseKbHMRb6qabzeNYSosHWwo-6K3kMakLdltqK_58k7RVPHjwFiYkQxKSmWTyzYfQjVdamsJaolNSbaEZkZI5Qj0wzm3L8RTBf3kQg4EcjdRwA1ZPWBgASJ_PoBmLKZbvZnYVn8rCDg-XhXCc1lBNCL4Ga-2h2_SdWVF11-50H0nineYxgNaM1ODNbaNf9CnJevQO_qn3EDV-cHh4-G1hjtAOVMeo0y8_wZFQsaHHwe23ySzc8V-nuKxwd81rM9WTKuITca-MXmUURyW4nxijG-i5133q3JMNFQIpKVVLYltciEyDcIYqpXXOtLTBFdNWGKO8UIo55oK31vIUrMytsgUE62QM1wA5y09QvZpVcIqwkGDBW595FTNFZqYwObU-9CtoARk_Q404A-P5OtvFeDv48z_kF2g_znN8Z6XFJaovFyu4Qrv2Y1m-L67TGn0BIeSUmQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0oGvWkRozf7sF4K253u9vtkRAIRiAkouFG2u4UN5HFIBh_vm0BjQcP3ppp2knbtDPt9M0DuDFCZirRmkifVJtLRrKM5YQaZGmqozz1EfznDu_1suFQ9FdgdY-FQUT_-Qxrruhj-flUL9xTmd3h9rJgj9NN2EoYi8IlXGsHbv2HZkHFXb3RfCSeeTp1IbSaIwevrZv9IlDx9qO1_0_NB1D9QeIF_W8bcwgbWB5Bo1t8Yk5sxYogJ6i_jqf2lv8yCYoyaC6ZbSZyXDqEYtAqnF_pxE5J0PWc0VV4ajUHjTZZkSGQglIxJzpKOQ8l8lxRIaSMmcy0dcak5koJw4VgOcutvxYZijqLtdAJWvukVCoRYxYfQ6WclngCAc9Qo9EmNMLligxVomKqje2X0wTD9BSqbgZGb8t8F6P14M_-kF_DbnvQ7Yw6972Hc9hzc-5eXWlyAZX5bIGXsK0_5sX77Mqv1xcMgpfg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Applied+Computational+Electromagnetics+Society+Symposium+%28ACES-China%29&rft.atitle=Mixed-+Precision+Algorithm+in+Electromagnetic+Finite+Element+Method&rft.au=Zhi-ming%2C+Li&rft.au=Hao-xiang%2C+Wu&rft.au=Sheng%2C+Zuo&rft.au=Xi%2C+Chen&rft.date=2023-08-15&rft.pub=Applied+Computational+Electromagnetics+Society+%28ACES%29&rft.spage=1&rft.epage=3&rft_id=info:doi/10.23919%2FACES-China60289.2023.10249847&rft.externalDocID=10249847 |