Deep Learning Based Segmentation of Luria's Alternating Series Test to Support Diagnostics of Parkinson's Disease

This research paper focuses on the analysis of various segments of Luria's alternating series drawing test as a diagnostic support for Parkinson's disease. Digitization of drawing tests has allowed capturing pen movement parameters imperceptible to the naked eye, enabling precise neurologi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) s. 1066 - 1071
Hlavní autori: Valla, Elli, Laur, Henry, Nomm, Sven, Medijainen, Kadri, Taba, Pille, Toomela, Aaro
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 15.12.2023
Predmet:
ISSN:1946-0759
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This research paper focuses on the analysis of various segments of Luria's alternating series drawing test as a diagnostic support for Parkinson's disease. Digitization of drawing tests has allowed capturing pen movement parameters imperceptible to the naked eye, enabling precise neurological disorder diagnosis. However, this analysis of parameters presents a disparity between the pre-digital era's human-assisted assessment and the machine learning algorithm employed today. While human practitioners primarily emphasized overall performance and subject errors, the machine learning method relies on kinematic and pressure features to characterize pen tip movements. The paper aims to bridge this gap by utilizing the deep learning object detection algorithm to identify test elements and classical machine learning techniques to analyze kinematic and pressure parameters associated with drawing these elements. The main research contribution centers around two key aspects: 1) evaluating the individual informativeness of test elements at different stages, i.e., beginning, middle, and final parts of the test, and 2) establishing an efficient automatic segmentation framework aimed at enhancing decision support systems in the context of Parkinson's disease diagnosis,
AbstractList This research paper focuses on the analysis of various segments of Luria's alternating series drawing test as a diagnostic support for Parkinson's disease. Digitization of drawing tests has allowed capturing pen movement parameters imperceptible to the naked eye, enabling precise neurological disorder diagnosis. However, this analysis of parameters presents a disparity between the pre-digital era's human-assisted assessment and the machine learning algorithm employed today. While human practitioners primarily emphasized overall performance and subject errors, the machine learning method relies on kinematic and pressure features to characterize pen tip movements. The paper aims to bridge this gap by utilizing the deep learning object detection algorithm to identify test elements and classical machine learning techniques to analyze kinematic and pressure parameters associated with drawing these elements. The main research contribution centers around two key aspects: 1) evaluating the individual informativeness of test elements at different stages, i.e., beginning, middle, and final parts of the test, and 2) establishing an efficient automatic segmentation framework aimed at enhancing decision support systems in the context of Parkinson's disease diagnosis,
Author Nomm, Sven
Laur, Henry
Taba, Pille
Valla, Elli
Medijainen, Kadri
Toomela, Aaro
Author_xml – sequence: 1
  givenname: Elli
  surname: Valla
  fullname: Valla, Elli
  email: elli.valla@taltech.ee
  organization: Tallinn University of Technology,Department of Software Science,Tallinn,Estonia
– sequence: 2
  givenname: Henry
  surname: Laur
  fullname: Laur, Henry
  email: helaur@taltech.ee
  organization: Tallinn University of Technology,Department of Software Science,Tallinn,Estonia
– sequence: 3
  givenname: Sven
  surname: Nomm
  fullname: Nomm, Sven
  email: sven.nomm@taltech.ee
  organization: Tallinn University of Technology,Department of Software Science,Tallinn,Estonia
– sequence: 4
  givenname: Kadri
  surname: Medijainen
  fullname: Medijainen, Kadri
  email: kadri.medijainen@ut.ee
  organization: Institute of Sport Sciences and Physiotherapy University of Tartu,Tartu,Estonia
– sequence: 5
  givenname: Pille
  surname: Taba
  fullname: Taba, Pille
  email: pille.taba@kliinikum.ee
  organization: University of Tartu,Department of Neurology,Tartu,Estonia
– sequence: 6
  givenname: Aaro
  surname: Toomela
  fullname: Toomela, Aaro
  email: aaro.toomela@tlu.ee
  organization: School of Natural Sciences and Health Tallinn University,Tallinn,Estonia
BookMark eNotjMtKAzEYRqMoWGvfQCE7V1NznUyWtfVSGFFoXZc086dE22RM0oVv74iuPvg451yisxADIHRDyZRSou-W85d2Jhut1JQRxqeEUNmcoIlWuuGScCG5qE_RiGpRV0RJfYEmOX-QgSO61lyP0NcCoMctmBR82OF7k6HDK9gdIBRTfAw4Otwekze3Gc_2BVIY7oFcQfKQ8RpywSXi1bHvYyp44c0uxFy8zb_mm0mfPuQYBnvhMwz5K3TuzD7D5H_H6P3xYT1_rtrXp-V81laeUl0qSzUjqnbK1daKjvJO0C04q7my3LCt7DrBt6KrnaZWNMCYY0YRSSRvGCecj9H1X9cDwKZP_mDS94YSIXVDFf8BToBeTw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLA58977.2023.00158
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350345346
EISSN 1946-0759
EndPage 1071
ExternalDocumentID 10459817
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i119t-c192076f7f6cc4d13d41befc937c3a2b5dd43b4d6f91c48e22f2a705053823033
IEDL.DBID RIE
IngestDate Wed Aug 27 02:17:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-c192076f7f6cc4d13d41befc937c3a2b5dd43b4d6f91c48e22f2a705053823033
PageCount 6
ParticipantIDs ieee_primary_10459817
PublicationCentury 2000
PublicationDate 2023-Dec.-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-15
  day: 15
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation)
PublicationTitleAbbrev ICMLA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096939
Score 2.2409608
Snippet This research paper focuses on the analysis of various segments of Luria's alternating series drawing test as a diagnostic support for Parkinson's disease....
SourceID ieee
SourceType Publisher
StartPage 1066
SubjectTerms Deep learning
handwriting dataset
Kinematics
Luria's alternating series
Machine learning algorithms
Parkinson's disease
Sensitivity
Spirals
Writing
yolo
Title Deep Learning Based Segmentation of Luria's Alternating Series Test to Support Diagnostics of Parkinson's Disease
URI https://ieeexplore.ieee.org/document/10459817
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5OPHhSceJvchA8dTZN0rTHuTkU5hg4YbeRJi9joO3cOv9-X9rqvHjw1oaEQpLyfbz3vvcRcoOYZTKEgUAqKwOBVzjIEIWDNAQmrGBOa1eZTajRKJlO03EjVq-0MABQFZ9Bxz9WuXxbmI0PleEfLmSaMNUiLaVULdbaBlSQjKc8bVQ6-Hb31HsedmWCDKfjTcJ90sE7u_9yUalAZHDwz88fkvZWjkfHP0BzRHYgPyYffYAlbdqjzuk9opGlLzB_b8REOS0cHW7wft2uafetifvhTB8PgzWdIBzQsqDe1hMpOO3XNXe-a7Nf6dXQlTAMV_frJE6bvA4eJr3HoPFPCBaMpWVgkL2FKnbKxcYIyzjufQbOICMxXEeZtFbwTNjYpcyIBKLIRVp5azufHAw5PyG7eZHDKaEm1DzjSI60DIXgOuMcpGUahznEsTojbb9fs2XdImP2vVXnf4xfkH1_JL4uhMlLsluuNnBF9sxnuVivrquD_QKjWaRO
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46BT2pOPG3OQieOpsm6Y_j3BwbdmPghN1GmrzKQNu5df79vrTVefHgrQ0JlCTl-3jvfe8j5BYxSycIA44MjHQEXmEnQRR2IheYMIKlSqWl2UQwGoXTaTSuxeqlFgYAyuIzaNnHMpdvcr22oTL8w4WMQhZskx0phMcqudYmpIJ0POJRrdPBt_tBZxi3ZYgcp2Vtwm3awXq7__JRKWGkd_DPDzgkzY0gj45_oOaIbEF2TD66AAtaN0h9pQ-IR4Y-w-t7LSfKaJ7SeI037G5F22915A9n2ogYrOgEAYEWObXGnkjCabequrN9m-1Kq4cupWG4ululcZrkpfc46fSd2kHBmTMWFY5G_uYGfhqkvtbCMI67n0CqkZNorrxEGiN4IoyfRkyLEDwv9VRgze1setDl_IQ0sjyDU0K1q3jCkR4p6QrBVcI5SMMUDnPw_eCMNO1-zRZVk4zZ91ad_zF-Q_b6k2E8iwejpwuyb4_HVokweUkaxXINV2RXfxbz1fK6POQvXSGnlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation%29&rft.atitle=Deep+Learning+Based+Segmentation+of+Luria%27s+Alternating+Series+Test+to+Support+Diagnostics+of+Parkinson%27s+Disease&rft.au=Valla%2C+Elli&rft.au=Laur%2C+Henry&rft.au=Nomm%2C+Sven&rft.au=Medijainen%2C+Kadri&rft.date=2023-12-15&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=1066&rft.epage=1071&rft_id=info:doi/10.1109%2FICMLA58977.2023.00158&rft.externalDocID=10459817