A deep study of analysis for encryption and decryption algorithm in cloud data with machine learning techniques

An emergence of cloud computing has made secure search on encrypted cloud data a popular area of study. Previous techniques' limited ability to generate query trapdoors made them less effective at ensuring query secrecy. A data user can also readily examine the query results of another data use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 International Conference on Communication, Computing and Internet of Things (IC3IoT) S. 1 - 5
Hauptverfasser: Bharathi, M. Divya, Latha, B.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 17.04.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An emergence of cloud computing has made secure search on encrypted cloud data a popular area of study. Previous techniques' limited ability to generate query trapdoors made them less effective at ensuring query secrecy. A data user can also readily examine the query results of another data user in these systems, as the data owner often has complete knowledge of the query results of the data users. In certain application settings, the data user could be reluctant to give away the privacy of their query to anybody but themselves. It provide a search technique that enhances privacy by letting the data user create a different random query trapdoor each time and also it suggest the security of our scheme and show through extensive experiments that it is exactly right. Put the suggested plan into practice and evaluate how well it performs in terms of key generation process, secure indexing, trapdoor creation, and search timing. Compared to current hashing and attribute-based encryption searchable encryption technologies, the suggested scheme outperforms them. So, contributed to plan into practice, assess, and contrast its results using the example of searchable algorithms for encryption
AbstractList An emergence of cloud computing has made secure search on encrypted cloud data a popular area of study. Previous techniques' limited ability to generate query trapdoors made them less effective at ensuring query secrecy. A data user can also readily examine the query results of another data user in these systems, as the data owner often has complete knowledge of the query results of the data users. In certain application settings, the data user could be reluctant to give away the privacy of their query to anybody but themselves. It provide a search technique that enhances privacy by letting the data user create a different random query trapdoor each time and also it suggest the security of our scheme and show through extensive experiments that it is exactly right. Put the suggested plan into practice and evaluate how well it performs in terms of key generation process, secure indexing, trapdoor creation, and search timing. Compared to current hashing and attribute-based encryption searchable encryption technologies, the suggested scheme outperforms them. So, contributed to plan into practice, assess, and contrast its results using the example of searchable algorithms for encryption
Author Latha, B.
Bharathi, M. Divya
Author_xml – sequence: 1
  givenname: M. Divya
  surname: Bharathi
  fullname: Bharathi, M. Divya
  email: divyamoorthi1022@gmail.com
  organization: Sri Sai Ram Engineering College, Tambaram,Department of Computer Science and Engineering,Chennai
– sequence: 2
  givenname: B.
  surname: Latha
  fullname: Latha, B.
  email: latha.cse@sairam.edu.in
  organization: Sri Sai Ram Engineering College, Tambaram,Department of Computer Science and Engineering,Chennai
BookMark eNpFkMtOwzAURI0ECyj9AxbmAxL8uEnsZRXxiFSJTVlXt_ZNYym1S5IK5e-JBIjVaM6MZjF37DqmSIw9SpFLKexTU-sm7UphQOZKKMilKAqhRHXF1rayRhdCF6o09palDfdEZz5OFz_z1HKM2M9jGHmbBk7RDfN5Ciku3C_Nf9sf0xCm7sRD5K5PlyXFCfnXwvgJXRci8Z5wiCEe-USui-HzQuM9u2mxH2n9qyv28fK8q9-y7ftrU2-2WZDSTtnB48EbJcEaDw68L5X0ptVgCTwplKLSRBp8YQDAESC6tkJpD1I7AK1X7OFnNxDR_jyEEw7z_u8H_Q3vNlsI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IC3IoT60841.2024.10550207
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350352689
EndPage 5
ExternalDocumentID 10550207
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-bdabd821498d4c4dd621d8f349e4de2a1073ee34d58444ce4aacf7a19b13c4433
IEDL.DBID RIE
IngestDate Wed Jul 03 05:40:23 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-bdabd821498d4c4dd621d8f349e4de2a1073ee34d58444ce4aacf7a19b13c4433
PageCount 5
ParticipantIDs ieee_primary_10550207
PublicationCentury 2000
PublicationDate 2024-April-17
PublicationDateYYYYMMDD 2024-04-17
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-17
  day: 17
PublicationDecade 2020
PublicationTitle 2024 International Conference on Communication, Computing and Internet of Things (IC3IoT)
PublicationTitleAbbrev IC3IoT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8667061
Snippet An emergence of cloud computing has made secure search on encrypted cloud data a popular area of study. Previous techniques' limited ability to generate query...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Cloud computing
cloud data
Data models
Data privacy
inquery result
Machine learning
Machine learning algorithms
Secure encrypted data
Telecommunication computing
Timing
Title A deep study of analysis for encryption and decryption algorithm in cloud data with machine learning techniques
URI https://ieeexplore.ieee.org/document/10550207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62iHhSseKbCF633cfsZnOUoliQ0kOV3kqymdSFdrdst4L_3iTdtnjw4C3vQAKZb5LM9xHyyGNj1LX0PW2wvgeKx54EkXjGEkYyAcU2WgQfb2w4TCcTPmqC1V0sDCK6z2fYtUn3lq_KbG2vynpWzNHAG9YiLcaSTbDWEXloeDN7g340KMeJn4J1_ELobtv_Uk5xhuPl5J9TnpLOPgSPjnbG5YwcYHFOyieqEJfUccLSUlPRUIpQAz2p6VN9uxPAlCvTcp-dz8oqrz8XNC9oNi_XplbUgtpLWLpw3ymRNvoRM7qjdV11yPvL87j_6jWKCV4eBLz2pBJSpaHxelIFGSiVhIFKdQQcQWEojK8XIUagDOwAyBCEyDQTAZdBlAFE0QVpF2WBl4SG2gemNOMy4RAanGhG8oVGLuJYasAr0rGrNV1uSDGm24W6_qP8hhzbPbEPMQG7Je26WuMdOcy-6nxV3but_AHwxqK1
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UjXpSI8a3NfG6sLudffRoiAYiEg5ouJF2O8VNYJfAYuK_t10WiAcP3vpu0iadb9rO9xHyyANj1LV0HW2wvgOKB44EETrGEjIZgopWWgQf3ajXi4dD3q-C1ctYGEQsP59hwybLt3yVJ0t7Vda0Yo4G3kS7ZM9KZ7mrcK0D8lAxZzY7LdbJB6Ebg3X9fGise_zSTilNx8vxPyc9IfVtEB7tb8zLKdnB7IzkT1QhzmjJCktzTUVFKkIN-KSmz_y7PANMuTItt9nJOJ-nxeeUphlNJvnS1IpCUHsNS6flh0qklYLEmG6IXRd18v7yPGi1nUozwUk9jxeOVEKq2Dd-T6wgAaVC31OxZsARFPrCeHsMkYEywAMgQRAi0ZHwuPRYAsDYOalleYYXhPrahUjpiMuQg2-QohnJFRq5CAKpAS9J3a7WaLaixRitF-rqj_J7ctgevHVH3U7v9Zoc2f2xzzJedENqxXyJt2Q_-SrSxfyu3NYfj1ul-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Communication%2C+Computing+and+Internet+of+Things+%28IC3IoT%29&rft.atitle=A+deep+study+of+analysis+for+encryption+and+decryption+algorithm+in+cloud+data+with+machine+learning+techniques&rft.au=Bharathi%2C+M.+Divya&rft.au=Latha%2C+B.&rft.date=2024-04-17&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FIC3IoT60841.2024.10550207&rft.externalDocID=10550207