A Distinguished Method for Network Intrusion Detection using Random Initialized Viterbi Algorithm in Hidden Markov Model

Intrusion Detection System (IDS) is a system that surveils the dubious network activity. There are several approaches which deal with intrusion detection and cyber-attack detection, but the most optimal IDS would be the one which can predict the upcoming threats along with detecting the present atta...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2022 OITS International Conference on Information Technology (OCIT) s. 273 - 277
Hlavní autori: P, Sharmila S, Shukla, Pratyush, Chaudhari, Narendra S
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2022
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Intrusion Detection System (IDS) is a system that surveils the dubious network activity. There are several approaches which deal with intrusion detection and cyber-attack detection, but the most optimal IDS would be the one which can predict the upcoming threats along with detecting the present attacks. The Machine Learning probabilistic models work remarkably in prediction of threats among these models, Hidden Markov Model (HMM) outperforms all other models. HMM is widely used in cryptanalysis, gene prediction, computational linguistic, speech analysis as well as its synthesis and network attacks detection and prediction. In this paper, we have proposed a distinct methodology using Viterbi algorithm of HMM which is initialized with the random parameter. Our methodology significantly upsurges the detection accuracy of the current state along with all states, it also enhances the prediction accuracy of the next feasible state when compared to existing approaches.
AbstractList Intrusion Detection System (IDS) is a system that surveils the dubious network activity. There are several approaches which deal with intrusion detection and cyber-attack detection, but the most optimal IDS would be the one which can predict the upcoming threats along with detecting the present attacks. The Machine Learning probabilistic models work remarkably in prediction of threats among these models, Hidden Markov Model (HMM) outperforms all other models. HMM is widely used in cryptanalysis, gene prediction, computational linguistic, speech analysis as well as its synthesis and network attacks detection and prediction. In this paper, we have proposed a distinct methodology using Viterbi algorithm of HMM which is initialized with the random parameter. Our methodology significantly upsurges the detection accuracy of the current state along with all states, it also enhances the prediction accuracy of the next feasible state when compared to existing approaches.
Author Shukla, Pratyush
Chaudhari, Narendra S
P, Sharmila S
Author_xml – sequence: 1
  givenname: Sharmila S
  surname: P
  fullname: P, Sharmila S
  email: phd2201101012@iiti.ac.in
  organization: Indian Institute of Technology,Department of Computer Science and Engg.,Indore,Madhya Pradesh,India
– sequence: 2
  givenname: Pratyush
  surname: Shukla
  fullname: Shukla, Pratyush
  email: pratyush19shukla@gmail.com
  organization: Jaypee University of Engineering and Technology,Department of Computer Science and Engg.,Guna,India
– sequence: 3
  givenname: Narendra S
  surname: Chaudhari
  fullname: Chaudhari, Narendra S
  email: nsc@iiti.ac.in
  organization: Indian Institute of Technology,Department of Computer Science and Engg.,Indore,Madhya Pradesh,India
BookMark eNotkE1PAjEYhGuiB0H_AYf-AbDd7vbjSECFBCQx6JW09N3lDUtrusWvX-8aPc1M8swcZkAuQwxAyIizCefM3G1my20llRSTghXFhDFWmQsy4FJWpRGl1tfkc0rn2GUMzRm7A3i6hnyIntYx0SfIHzEd6TLkdO4wBjqHDPv86_ocGvpsg4-nHsCMtsXvvv-KGZJDOm2bmDAfThQDXaD3EOjapmN8p-voob0hV7VtO7j91yF5ebjfzhbj1eZxOZuuxsi5yWPnQDlR1d5J4UUpmVU1OFM4LfbKcA2aK19XyhrDHOhK8prrUjondF3wQoohGf3tIgDs3hKebPra8f4KoXQpfgAKTluA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/OCIT56763.2022.00059
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665493488
9781665493482
EndPage 277
ExternalDocumentID 10053784
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-bbe7b35fdb63d3460a7feb92b83c7918e817df57a990be8561f1846bb38f21263
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:46 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-bbe7b35fdb63d3460a7feb92b83c7918e817df57a990be8561f1846bb38f21263
PageCount 5
ParticipantIDs ieee_primary_10053784
PublicationCentury 2000
PublicationDate 2022-Dec.
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.
PublicationDecade 2020
PublicationTitle 2022 OITS International Conference on Information Technology (OCIT)
PublicationTitleAbbrev OCIT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8146864
Snippet Intrusion Detection System (IDS) is a system that surveils the dubious network activity. There are several approaches which deal with intrusion detection and...
SourceID ieee
SourceType Publisher
StartPage 273
SubjectTerms Computational modeling
Hidden Markov Model
Hidden Markov models
Intrusion detection system
Machine learning
Network attack prediction
Network intrusion detection
pattern recognition
Predictive models
Speech analysis
Viterbi algorithm
Viterbi decoding algorithm
Title A Distinguished Method for Network Intrusion Detection using Random Initialized Viterbi Algorithm in Hidden Markov Model
URI https://ieeexplore.ieee.org/document/10053784
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXhd3Wcex9JaWtBapJbeSrJJ6kKblbot4q93kq2Piwdvy7JhYcLwzSTf9w1C12EsFKA0tKkpzYPUZHEgCY-DyIgE8IjkzDveTO7pcMimUz7aitW9FkZr7cln-sY9-rt8VeZrd1QGGe7cR1jaQA1KSS3W2srhopDfPnYG44xAwkDbF3sfTudA-mtoiseM3v4__3aAWj_qOzz6xpVDtKPtEXpv465LRztfOxa7wg9-9DOGmhMPayo3HlinoIBA466uPMXKYsdrn-MnYVW5hA8KSOhF8QHrJ057LAvcXszLVVG9LHFhcd8ZiljsBDzlBrs5aYsWeu7djTv9YDs1ISiiiFeBlJrKJDNKkkQlKQkFNVryWLIkpzximkVUmYwKwCGpGdRPBro8ImXCDOAYSY5R05ZWnyAsoVikIsyEca77KmNcZRwaHM1zKmMuTlHLhW32WhtjzL4idvbH-3O053amZoNcoCYERV-i3XxTFW-rK7-dn_B0o4c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aBT2pWPHbHLyudj-THEtrabFdi9TirSSbpC60WanbIv56J-n6cfHgbVk2LEwY3kzy3huErhsBl4DS0KZGJPMiHQeeSFjg-ZqHgEdJRp3jzbhP0pQ-P7NhJVZ3WhillCOfqRv76O7yZZEt7VEZZLh1H6HRJtqyo7MquVYliPMb7Pah1RvFCaQMNH6Bc-K0HqS_xqY41Ojs_fN_-6j-o7_Dw29kOUAbyhyi9yZu24Q006XlsUs8cMOfMVSdOF2TuXHPWA0FhBq3VelIVgZbZvsUP3Ijizl8kENKz_IPWD-26mOR4-ZsWizy8mWOc4O71lLEYCvhKVbYTkqb1dFT527U6nrV3AQv931WekIoIsJYS5GEMoySBidaCRYIGmaE-VRRn0gdEw5IJBSFCkpDn5cIEVINSJaER6hmCqOOERZQLhLeiLm2vvsypkzGDFocxTIiAsZPUN2GbfK6tsaYfEXs9I_3V2inOxr0J_1een-Gdu0urbkh56gGAVIXaDtblfnb4tJt7SegY6bQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+OITS+International+Conference+on+Information+Technology+%28OCIT%29&rft.atitle=A+Distinguished+Method+for+Network+Intrusion+Detection+using+Random+Initialized+Viterbi+Algorithm+in+Hidden+Markov+Model&rft.au=P%2C+Sharmila+S&rft.au=Shukla%2C+Pratyush&rft.au=Chaudhari%2C+Narendra+S&rft.date=2022-12-01&rft.pub=IEEE&rft.spage=273&rft.epage=277&rft_id=info:doi/10.1109%2FOCIT56763.2022.00059&rft.externalDocID=10053784