A Fast Skeleton-Based Recognition of Traffic Police Gestures with Spatial-Temporal Graph Convolutional Network

In recent years, driver assistance systems have been improved to assist the driver. One of the essential and indispensable features is traffic police action recognition. It would be applied in the field of self-driving cars - one of the areas of interest to the research community and is being develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 RIVF International Conference on Computing and Communication Technologies (RIVF) S. 25 - 30
Hauptverfasser: Nguyen, Thanh-Hung, Do, Hong-Quan, Pham, Danh-Tuyen, Doan, Trung-Tung, Vu, Viet-Vu
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 23.12.2023
Schlagworte:
ISSN:2473-0130
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, driver assistance systems have been improved to assist the driver. One of the essential and indispensable features is traffic police action recognition. It would be applied in the field of self-driving cars - one of the areas of interest to the research community and is being developed widely in several major countries around the world, or the driver assistance system. This study proposes a fast recognition of traffic police actions based on human skeleton characteristics. Our proposed model will first detect the joints of the human body using the MediaPipe algorithm, then feed them to a Spatial-Temporal Graph Convolutional Network (ST-GCN) in order to classify the police actions into eight basic categories: Stop, Move Straight, Left Turn, Left Turn Waiting, Right Turn, Lane Changing, Slow Down, and Pullover. The experiments conducted on the real Traffic Police Gesture Dataset have shown the effectiveness of our proposed method.
AbstractList In recent years, driver assistance systems have been improved to assist the driver. One of the essential and indispensable features is traffic police action recognition. It would be applied in the field of self-driving cars - one of the areas of interest to the research community and is being developed widely in several major countries around the world, or the driver assistance system. This study proposes a fast recognition of traffic police actions based on human skeleton characteristics. Our proposed model will first detect the joints of the human body using the MediaPipe algorithm, then feed them to a Spatial-Temporal Graph Convolutional Network (ST-GCN) in order to classify the police actions into eight basic categories: Stop, Move Straight, Left Turn, Left Turn Waiting, Right Turn, Lane Changing, Slow Down, and Pullover. The experiments conducted on the real Traffic Police Gesture Dataset have shown the effectiveness of our proposed method.
Author Vu, Viet-Vu
Do, Hong-Quan
Doan, Trung-Tung
Nguyen, Thanh-Hung
Pham, Danh-Tuyen
Author_xml – sequence: 1
  givenname: Thanh-Hung
  surname: Nguyen
  fullname: Nguyen, Thanh-Hung
  email: hungntgch190704@fpt.edu.vn
  organization: FPT University,Hanoi,Vietnam
– sequence: 2
  givenname: Hong-Quan
  surname: Do
  fullname: Do, Hong-Quan
  email: quandh13@fe.edu.vn
  organization: FPT University,Hanoi,Vietnam
– sequence: 3
  givenname: Danh-Tuyen
  surname: Pham
  fullname: Pham, Danh-Tuyen
  email: tuyenpd5@fe.edu.vn
  organization: FPT University,Hanoi,Vietnam
– sequence: 4
  givenname: Trung-Tung
  surname: Doan
  fullname: Doan, Trung-Tung
  email: tungdt27@fe.edu.vn
  organization: FPT University,Hanoi,Vietnam
– sequence: 5
  givenname: Viet-Vu
  surname: Vu
  fullname: Vu, Viet-Vu
  email: vuvietvu@vnu.edu.vn
  organization: VNU Information Technology Institute, Vietnam National University,Hanoi,Vietnam
BookMark eNo1kNFOwjAYRqvRRETewMS-wLDt39HuEokgCVED6C3pur_SMNplKxLfXox69SUnJ-fiuyYXIQYk5I6zIeesuF_O36cjxiEfCiZgyJlUXDN2RgaFKjTkDHiupTwnPSEVZCeTXZFB1_mS5bnUOReqR8KYTk2X6GqHNaYYsgfTYUWXaONH8MnHQKOj69Y45y19jbW3SGfYpUOLHT36tKWrxiRv6myN-ya2pqaz1jRbOonhM9aHn8SJPWM6xnZ3Qy6dqTsc_G2fvE0f15OnbPEym0_Gi8xzXqSsNIobkKUBZwWAk8oqsFhVVmg5ssKVCLoouagKVKj1yCiouBAlcGatEtAnt79dj4ibpvV7035t_i-Cb-XfXrE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/RIVF60135.2023.10471800
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350315844
EISSN 2473-0130
EndPage 30
ExternalDocumentID 10471800
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIL
ID FETCH-LOGICAL-i119t-ba71a34ba3fc233f47c73ceddc2846c2fbe389b12d9e7e886a73d122b310cc723
IEDL.DBID RIE
IngestDate Wed Jun 26 19:40:45 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-ba71a34ba3fc233f47c73ceddc2846c2fbe389b12d9e7e886a73d122b310cc723
PageCount 6
ParticipantIDs ieee_primary_10471800
PublicationCentury 2000
PublicationDate 2023-Dec.-23
PublicationDateYYYYMMDD 2023-12-23
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-23
  day: 23
PublicationDecade 2020
PublicationTitle 2023 RIVF International Conference on Computing and Communication Technologies (RIVF)
PublicationTitleAbbrev RIVF
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib055485127
Score 1.8698144
Snippet In recent years, driver assistance systems have been improved to assist the driver. One of the essential and indispensable features is traffic police action...
SourceID ieee
SourceType Publisher
StartPage 25
SubjectTerms Action recognition
Autonomous automobiles
Biological system modeling
Classification algorithms
Communications technology
Convolutional neural networks
Law enforcement
police gesture recognition
Skeleton
spatial temporal graph
Title A Fast Skeleton-Based Recognition of Traffic Police Gestures with Spatial-Temporal Graph Convolutional Network
URI https://ieeexplore.ieee.org/document/10471800
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLRoxcAEiCK-5YHVbW2ndTICIoWlqkpB3ark-VmqQAlqk_5-nvMBYmBgiyxFiewn3dm-d8fYrUch5ZwVCh2IYAShCIMAhQv9JY0aE4kdVmETZjoNl8to1jSrV70wiFiJz7DvH6u7fJtD6Y_KBt5WQBLD6bCOMaZu1mqLh2CRyIMyjYZLDqPB_Pktpv2GHvV9Rni_fftXjkoFI_HhP3_giPV-GvL47BtqjtkeZicsu-Nxsi34yztBh08CvidEsnzeSoLyjOeOExh5lwheGQAjnxAKlLTF5v4AlvtAYipAsagNqj74xPtXc_rqrilJGpvWSvEee40fFw9PoolPEGspo0KkiZGJDtJEO1Bau8CA0YDWAkHSGJRLkdhKKpWN0GAYjhOjrVQqJcYHYJQ-Zd0sz_CMcQeRG4VoUpsQBYyQOA3xIgArwUQJ2nPW85O1-qwdMlbtPF38MX7JDvySeFmI0lesW2xKvGb7sCvW281Nta5fUMOlcw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA06BT2pOPG3OXjNtiTd0h5V7DacZcwpu402-QJDaWXr9vf7pT8UDx68lUBpST54L8n73iPk1qGQsNYwAVYzr6t95nseMOu7SxrRQxLbKcImVBT5s1kwrprVi14YACjEZ9Byj8Vdvsn02h2VtZ2tAEeGs012up4neNmuVZcPAiPSB6EqFRfvBO3J8C3EHYfstlxKeKt-_1eSSgEk4cE_f-GQNH9a8uj4G2yOyBakxyS9o2G8yunLO4KHywK-R0wydFKLgrKUZpYiHDmfCFpYAAPtIw6scZNN3REsdZHEWIJsWlpUfdC-c7Cm-NVNVZQ4FpVa8SZ5DR-nDwNWBSiwBedBzpJY8Vh6SSytFlJaT2klNRijEZR6WtgEkK8kXJgAFPh-L1bScCES5HxaKyFPSCPNUjgl1OrAdn1QiYmRBAaArAaZkdaGaxXEYM5I003W_LP0yJjX83T-x_gN2RtMn0fz0TB6uiD7bnmcSETIS9LIl2u4Irt6ky9Wy-tijb8AF56oug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+RIVF+International+Conference+on+Computing+and+Communication+Technologies+%28RIVF%29&rft.atitle=A+Fast+Skeleton-Based+Recognition+of+Traffic+Police+Gestures+with+Spatial-Temporal+Graph+Convolutional+Network&rft.au=Nguyen%2C+Thanh-Hung&rft.au=Do%2C+Hong-Quan&rft.au=Pham%2C+Danh-Tuyen&rft.au=Doan%2C+Trung-Tung&rft.date=2023-12-23&rft.pub=IEEE&rft.eissn=2473-0130&rft.spage=25&rft.epage=30&rft_id=info:doi/10.1109%2FRIVF60135.2023.10471800&rft.externalDocID=10471800