Performance Evaluation of Semantic Segmentation Models for Identification of Sweet Potato Leaf Diseases

Semantic segmentation models have been proposed to identify plant leaf diseases. However, these models need to be evaluated on different datasets and applications for validation of model performance and deployment on edge devices. This research carried out performance evaluation of U-Net, Compressed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS) Jg. 1; S. 1 - 5
Hauptverfasser: Sodiq, Kazeem, Adeyanju, Ibrahim, Okomba, Nnamdi
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Semantic segmentation models have been proposed to identify plant leaf diseases. However, these models need to be evaluated on different datasets and applications for validation of model performance and deployment on edge devices. This research carried out performance evaluation of U-Net, Compressed U-Net, SegNet and PSPNet segmentation models to identify early and late blight diseased leaf images of Sweet potato. The image dataset was obtained from Plant village dataset. Three hundred leaf images were manually annotated using VGG Image Annotator (VIA) tool. Python programming language version 3.10.6 was used to implement the models. The dataset was split into 70% for training, 20% for validation and 10% for testing. The results of evaluation of the models showed that the Compressed U-Net outperformed other models for the dataset. The compressed U-Net requires only 7.9% of space needed by standard U-Net model and inference time for predicting the potato diseased leaves is good without compromise with mean intersection over union. This work recommends evaluating the performance of Compressed U-Net on diseased leaves of different crops and deploying the model on edge devices such as Raspberry Pi, smartphones to validate the model results.
AbstractList Semantic segmentation models have been proposed to identify plant leaf diseases. However, these models need to be evaluated on different datasets and applications for validation of model performance and deployment on edge devices. This research carried out performance evaluation of U-Net, Compressed U-Net, SegNet and PSPNet segmentation models to identify early and late blight diseased leaf images of Sweet potato. The image dataset was obtained from Plant village dataset. Three hundred leaf images were manually annotated using VGG Image Annotator (VIA) tool. Python programming language version 3.10.6 was used to implement the models. The dataset was split into 70% for training, 20% for validation and 10% for testing. The results of evaluation of the models showed that the Compressed U-Net outperformed other models for the dataset. The compressed U-Net requires only 7.9% of space needed by standard U-Net model and inference time for predicting the potato diseased leaves is good without compromise with mean intersection over union. This work recommends evaluating the performance of Compressed U-Net on diseased leaves of different crops and deploying the model on edge devices such as Raspberry Pi, smartphones to validate the model results.
Author Adeyanju, Ibrahim
Okomba, Nnamdi
Sodiq, Kazeem
Author_xml – sequence: 1
  givenname: Kazeem
  surname: Sodiq
  fullname: Sodiq, Kazeem
  organization: Yaba College of Technology,Department of Computer Engineering,Lagos,Nigeria
– sequence: 2
  givenname: Ibrahim
  surname: Adeyanju
  fullname: Adeyanju, Ibrahim
  email: ibrahim.adeyanju@fuoye.edu.ng
  organization: Federal University,Department of Computer Engineering,Oye-Ekiti,Nigeria
– sequence: 3
  givenname: Nnamdi
  surname: Okomba
  fullname: Okomba, Nnamdi
  email: nnamdi.okomba@fuoye.edu.ng
  organization: Federal University,Department of Computer Engineering,Oye-Ekiti,Nigeria
BookMark eNpFT91KwzAYjaAXOvcGXsQHaE36JU1yOWp1hQ4H0-uRpl9GoG2krYpvb2GKV-dw_uDckMshDkjIPWcp58w8VMWu3Bykzg2kGcsg5QyUAZlfkLVRRoNkILUGcU1Oexx9HHs7OKTlp-0-7BziQKOnB1zUObiFnHoc5rOxiy12E106tGoXNfjg_itfiDPdxyUbaY3W08cwoZ1wuiVX3nYTrn9xRd6eytdim9Qvz1WxqZPAuZmTxjCpmkZY32ovGIDIJLosa0WDxuuscUIrNHyZVlZx4xzyhhsBLYocNcCK3J13AyIe38fQ2_H7-PcffgCIfVe0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMEAS58693.2023.10379356
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350358834
EndPage 5
ExternalDocumentID 10379356
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-b9057bb4afd8f4033425ec22d4be9f82bc487e91eaf7a719cce1b1943de46e833
IEDL.DBID RIE
IngestDate Wed May 01 11:48:44 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-b9057bb4afd8f4033425ec22d4be9f82bc487e91eaf7a719cce1b1943de46e833
PageCount 5
ParticipantIDs ieee_primary_10379356
PublicationCentury 2000
PublicationDate 2023-Nov.-1
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-1
  day: 01
PublicationDecade 2020
PublicationTitle 2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS)
PublicationTitleAbbrev ICMEAS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8492522
Snippet Semantic segmentation models have been proposed to identify plant leaf diseases. However, these models need to be evaluated on different datasets and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Crops
Deep Learning
Edge
Image coding
Image edge detection
Leaf diseases
Performance evaluation
PSPNet
Segmentation
SegNet
Semantic segmentation
Smart phones
Training
U-Net
Title Performance Evaluation of Semantic Segmentation Models for Identification of Sweet Potato Leaf Diseases
URI https://ieeexplore.ieee.org/document/10379356
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uiHhSceJvInjt1jRp2hxlbijoKExht9EkL2Og7dg6_fdN0m7DgwdvIeQH5CW8l-R934fQvSQKBDE2cotCFTApo0DGVAYxOAm7iNMwyr3YRDIapZOJyBqwusfCAIBPPoOuK_q_fF2qtXsq6zlMm6Axb6FWkvAarHWA7hrezN5z_3XwMI5TLmjXqYJ3N-1_Kad4xzE8-ueUx6izg-DhbOtcTtAeFKdolu3S_PFgy9ONS4PHYGvtJrCF2WeDJyqwUzr7WGHbB9eIXNM80fku3wAVzkrbtsQvkBv8WP_WrDrofTh46z8FjVJCMCdEVIEUNuySkuVGp4aFlNqTCCqKNJMgTBpJZe8l1iZ2qCRPiFAKiCSCUQ2MQ0rpGWoXZQHnCFMqmE5BhZI7KhktRQqE5dxooR0zzAXquFWaLmoyjOlmgS7_qL9Ch84WNXzvGrWr5Rpu0L76quar5a034Q8eX5_Y
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46RX1SceLdCL52ay7tmkeZGxtuo7AJextNciIDbWXr9O-btN2GDz74FkJOAjkJ5-TyfR9Cj5IoEMTYzI36yuNSUk8GTHoBOAk7GjKfJoXYRGs0iqZTEVdg9QILAwDF5zNouGLxlq8ztXJXZU2HaRMsCHfRnpPOquBaB-ihYs5s9tvDztM4iELBGk4XvLG2-KWdUoSO7vE_Bz1B9S0ID8eb8HKKdiA9Q2_x9qM_7myYunFm8BhsrV0GtvD2USGKUuy0zt6X2NrgEpNrqku6wuQbIMdxZttmeACJwc_le82yjl67nUm751VaCd6cEJF7UtjES0qeGB0Z7jNm9yIoSjWXIExEpbInE-sV21UraRGhFBBJBGcaeAgRY-eolmYpXCDMmOA6AuXL0JHJaCkiIDwJjRbaccNcorqbpdlnSYcxW0_Q1R_19-iwNxkOZoP-6OUaHTm_lGC-G1TLFyu4RfvqK58vF3eFO38Anr2jIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+2nd+International+Conference+on+Multidisciplinary+Engineering+and+Applied+Science+%28ICMEAS%29&rft.atitle=Performance+Evaluation+of+Semantic+Segmentation+Models+for+Identification+of+Sweet+Potato+Leaf+Diseases&rft.au=Sodiq%2C+Kazeem&rft.au=Adeyanju%2C+Ibrahim&rft.au=Okomba%2C+Nnamdi&rft.date=2023-11-01&rft.pub=IEEE&rft.volume=1&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICMEAS58693.2023.10379356&rft.externalDocID=10379356