Computationally Efficient Early Prognosis of the Outcome of Comatose Cardiac Arrest Survivors Using Slow-Wave Activity Features in EEG

This study, part of 'Predicting Neurological Recovery from Coma After Cardiac Arrest: The George B. Moody PhysioNet Challenge 2023', evaluated a computationally efficient method in predicting cardiac arrest (CA) survivors' prognoses using electroencephalography (EEG) recordings of a d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computing in cardiology Ročník 50; s. 1 - 4
Hlavní autori: Salminen, Miikka, Partala, Juha, Vayrynen, Eero, Kortelainen, Jukka
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: CinC 01.10.2023
Predmet:
ISSN:2325-887X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study, part of 'Predicting Neurological Recovery from Coma After Cardiac Arrest: The George B. Moody PhysioNet Challenge 2023', evaluated a computationally efficient method in predicting cardiac arrest (CA) survivors' prognoses using electroencephalography (EEG) recordings of a dataset provided for participants. Authors' team Cerenion developed a random forest based machine learning algorithm. A feature set of channel-by-channel root mean square power of a well-described neurophysiological EEG phenomenon called slow-wave activity (SWA), with time elapsed since CA, was used. Five-fold cross-validation, using 80 % of the provided training set of EEG recordings from 607 out of 1020 patients, was used for evaluation. The held-out 20 % of data were used for testing and evaluating a final model trained on the full 80 % of the training data. Cross-validated results, evaluated at 72 hours after CA, for predicting the outcome were: AUROC 70 %, AUPRC 78 %, accuracy 68 %, F-measure 64 %. Evaluating the challenge metric on the training data at times of 12, 24, 48, and 72 hours after CA provided scores of: 0.32, 0.40, 0.64, and 0.58, respectively. The hidden validation and test sets were not used, earning no rank. The results show promise in using SWA power features in predicting the outcomes of comatose CA patients.
AbstractList This study, part of 'Predicting Neurological Recovery from Coma After Cardiac Arrest: The George B. Moody PhysioNet Challenge 2023', evaluated a computationally efficient method in predicting cardiac arrest (CA) survivors' prognoses using electroencephalography (EEG) recordings of a dataset provided for participants. Authors' team Cerenion developed a random forest based machine learning algorithm. A feature set of channel-by-channel root mean square power of a well-described neurophysiological EEG phenomenon called slow-wave activity (SWA), with time elapsed since CA, was used. Five-fold cross-validation, using 80 % of the provided training set of EEG recordings from 607 out of 1020 patients, was used for evaluation. The held-out 20 % of data were used for testing and evaluating a final model trained on the full 80 % of the training data. Cross-validated results, evaluated at 72 hours after CA, for predicting the outcome were: AUROC 70 %, AUPRC 78 %, accuracy 68 %, F-measure 64 %. Evaluating the challenge metric on the training data at times of 12, 24, 48, and 72 hours after CA provided scores of: 0.32, 0.40, 0.64, and 0.58, respectively. The hidden validation and test sets were not used, earning no rank. The results show promise in using SWA power features in predicting the outcomes of comatose CA patients.
Author Salminen, Miikka
Kortelainen, Jukka
Vayrynen, Eero
Partala, Juha
Author_xml – sequence: 1
  givenname: Miikka
  surname: Salminen
  fullname: Salminen, Miikka
  email: miikka.salminen@cerenion.com
  organization: Cerenion Oy,Oulu,Finland
– sequence: 2
  givenname: Juha
  surname: Partala
  fullname: Partala, Juha
  organization: Cerenion Oy,Oulu,Finland
– sequence: 3
  givenname: Eero
  surname: Vayrynen
  fullname: Vayrynen, Eero
  organization: Cerenion Oy,Oulu,Finland
– sequence: 4
  givenname: Jukka
  surname: Kortelainen
  fullname: Kortelainen, Jukka
  organization: Cerenion Oy,Oulu,Finland
BookMark eNotjN9KwzAchaMoOOduvfIiL9CZ5k-bXI7STWEwYQ69G2n7y4x0zUjSyl7A57ai5-bwwXfOLbrqXAcI3adkTimX6rGwXTGnhLI5UdkFmqlcSSYIk1RQcYkmlFGRSJm_36BZCJ9kjMilyuQEfRfueOqjjtZ1um3PuDTG1ha6iEvtR37x7tC5YAN2BscPwJs-1u4IvzhudXQBcKF9Y3WNF95DiHjb-8EOzge8C7Y74G3rvpI3PQBe1NEONp7xEnTsRxnbDpfl6g5dG90GmP33FO2W5WvxlKw3q-disU5smqqYVHkmGyaVIJVR3BjepA1wU0vOOeScNgAp4Q0VQomsTmmVmRo4qxqpK6Fqzabo4e_XAsD-5O1R-_M-JSzjJGXsB4M5ZgA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.22489/CinC.2023.096
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 9798350382525
EISSN 2325-887X
EndPage 4
ExternalDocumentID 10364013
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
NQS
OCL
OK1
RIE
RIL
RIO
ID FETCH-LOGICAL-i119t-b768d38950bf94ff4d1de4fc8444e742dee104d255956c12b6fce43bd8ab59ca3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:24:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-b768d38950bf94ff4d1de4fc8444e742dee104d255956c12b6fce43bd8ab59ca3
PageCount 4
ParticipantIDs ieee_primary_10364013
PublicationCentury 2000
PublicationDate 2023-Oct.-1
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-1
  day: 01
PublicationDecade 2020
PublicationTitle Computing in cardiology
PublicationTitleAbbrev CINC
PublicationYear 2023
Publisher CinC
Publisher_xml – name: CinC
SSID ssj0000578968
Score 1.8460433
Snippet This study, part of 'Predicting Neurological Recovery from Coma After Cardiac Arrest: The George B. Moody PhysioNet Challenge 2023', evaluated a...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Cardiac arrest
Computational efficiency
Electroencephalography
Recording
Root mean square
Training
Training data
Title Computationally Efficient Early Prognosis of the Outcome of Comatose Cardiac Arrest Survivors Using Slow-Wave Activity Features in EEG
URI https://ieeexplore.ieee.org/document/10364013
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN7YxhhPvmp8Zw9eqVCWxx4bQvVibVKNvTX7GBKSBkyBGv-Av9vZBduTB29AdiHZBzPf7HzzEXKvpVa-kL6jYwgcJhHuCHBjB_edrwXwkSeEFZuIptN4seCzjqxuuTAAYJPPYGgu7Vm-LlVjQmW4w_3Q4IEe6UVR1JK1tgEVdDxiHsZtYUY0TDF_SPIiGRp98KFri_Lv5FOs9Zgc_fO7x2Sw4-HR2dbCnJA9KE7JwXN3HH5GvltNhi6et_qiqS0IgS-jtnCx6WwS6fKKlhlFV4--NDUuMTC32BcBdwU0sYtE0bHV6aDzBv8em3JdUZtOQOer8tN5FxugY9VKTVDjNzbYmOYFTdPHAXmbpK_Jk9MJKzi55_HakYgxNHoqgSszzrKMaU8Dy1TMGAPEyhoAUZo2aCMIlTcyhCBgvtSxkAFXwj8n_aIs4IJQT3IIIz_go8hlQmZCqMwkpoJGT1S6-pIMzHguP9raGcvfobz64_k1OTQT1qbL3ZB-vW7gluyrTZ1X6zs74z_MEbBl
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oGvXkC-PbPXgt9rGF7pE0KEZAEjByI_uYJk1IayjF-Af83c5uEU4evLXNbpvsozPf7HzzEXKvpVaBkIGjIwgdJhHuCHAjB_ddoAVw3xPCik20BoNoMuHDFVndcmEAwCafQcNc2rN8navShMpwhwdNgwe2yU7ImO9VdK11SAVdj4g3o6o0I5qmiD_EaRY3jEJ4w7Vl-TcCKtZ-PB7-88tHpL5h4tHh2sYcky3ITshef3Ugfkq-K1WGVURv9kU7tiQEvoza0sWms0mlSwuaJxSdPfpaLnCRgbnFvgi5C6CxXSaKtq1SBx2V-P9Y5vOC2oQCOprln867WAJtq0psghrPscTGNM1op_NUJ2-PnXHcdVbSCk7qeXzhSEQZGn2V0JUJZ0nCtKeBJSpijAGiZQ2AOE0bvBE2lecbShCwQOpIyJArEZyRWpZncE6oJzk0W0HI_ZbLhEyEUIlJTQWNvqh09QWpm_GcflTVM6a_Q3n5x_M7st8d93vT3vPg5YocmMmrkueuSW0xL-GG7KrlIi3mt3b2fwAiXbOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Computing+in+cardiology&rft.atitle=Computationally+Efficient+Early+Prognosis+of+the+Outcome+of+Comatose+Cardiac+Arrest+Survivors+Using+Slow-Wave+Activity+Features+in+EEG&rft.au=Salminen%2C+Miikka&rft.au=Partala%2C+Juha&rft.au=Vayrynen%2C+Eero&rft.au=Kortelainen%2C+Jukka&rft.date=2023-10-01&rft.pub=CinC&rft.eissn=2325-887X&rft.volume=50&rft.spage=1&rft.epage=4&rft_id=info:doi/10.22489%2FCinC.2023.096&rft.externalDocID=10364013