Computationally Efficient Early Prognosis of the Outcome of Comatose Cardiac Arrest Survivors Using Slow-Wave Activity Features in EEG
This study, part of 'Predicting Neurological Recovery from Coma After Cardiac Arrest: The George B. Moody PhysioNet Challenge 2023', evaluated a computationally efficient method in predicting cardiac arrest (CA) survivors' prognoses using electroencephalography (EEG) recordings of a d...
Saved in:
| Published in: | Computing in cardiology Vol. 50; pp. 1 - 4 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
CinC
01.10.2023
|
| Subjects: | |
| ISSN: | 2325-887X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study, part of 'Predicting Neurological Recovery from Coma After Cardiac Arrest: The George B. Moody PhysioNet Challenge 2023', evaluated a computationally efficient method in predicting cardiac arrest (CA) survivors' prognoses using electroencephalography (EEG) recordings of a dataset provided for participants. Authors' team Cerenion developed a random forest based machine learning algorithm. A feature set of channel-by-channel root mean square power of a well-described neurophysiological EEG phenomenon called slow-wave activity (SWA), with time elapsed since CA, was used. Five-fold cross-validation, using 80 % of the provided training set of EEG recordings from 607 out of 1020 patients, was used for evaluation. The held-out 20 % of data were used for testing and evaluating a final model trained on the full 80 % of the training data. Cross-validated results, evaluated at 72 hours after CA, for predicting the outcome were: AUROC 70 %, AUPRC 78 %, accuracy 68 %, F-measure 64 %. Evaluating the challenge metric on the training data at times of 12, 24, 48, and 72 hours after CA provided scores of: 0.32, 0.40, 0.64, and 0.58, respectively. The hidden validation and test sets were not used, earning no rank. The results show promise in using SWA power features in predicting the outcomes of comatose CA patients. |
|---|---|
| AbstractList | This study, part of 'Predicting Neurological Recovery from Coma After Cardiac Arrest: The George B. Moody PhysioNet Challenge 2023', evaluated a computationally efficient method in predicting cardiac arrest (CA) survivors' prognoses using electroencephalography (EEG) recordings of a dataset provided for participants. Authors' team Cerenion developed a random forest based machine learning algorithm. A feature set of channel-by-channel root mean square power of a well-described neurophysiological EEG phenomenon called slow-wave activity (SWA), with time elapsed since CA, was used. Five-fold cross-validation, using 80 % of the provided training set of EEG recordings from 607 out of 1020 patients, was used for evaluation. The held-out 20 % of data were used for testing and evaluating a final model trained on the full 80 % of the training data. Cross-validated results, evaluated at 72 hours after CA, for predicting the outcome were: AUROC 70 %, AUPRC 78 %, accuracy 68 %, F-measure 64 %. Evaluating the challenge metric on the training data at times of 12, 24, 48, and 72 hours after CA provided scores of: 0.32, 0.40, 0.64, and 0.58, respectively. The hidden validation and test sets were not used, earning no rank. The results show promise in using SWA power features in predicting the outcomes of comatose CA patients. |
| Author | Salminen, Miikka Kortelainen, Jukka Vayrynen, Eero Partala, Juha |
| Author_xml | – sequence: 1 givenname: Miikka surname: Salminen fullname: Salminen, Miikka email: miikka.salminen@cerenion.com organization: Cerenion Oy,Oulu,Finland – sequence: 2 givenname: Juha surname: Partala fullname: Partala, Juha organization: Cerenion Oy,Oulu,Finland – sequence: 3 givenname: Eero surname: Vayrynen fullname: Vayrynen, Eero organization: Cerenion Oy,Oulu,Finland – sequence: 4 givenname: Jukka surname: Kortelainen fullname: Kortelainen, Jukka organization: Cerenion Oy,Oulu,Finland |
| BookMark | eNotjN9KwzAchaMoOOduvfIiL9CZ5k-bXI7STWEwYQ69G2n7y4x0zUjSyl7A57ai5-bwwXfOLbrqXAcI3adkTimX6rGwXTGnhLI5UdkFmqlcSSYIk1RQcYkmlFGRSJm_36BZCJ9kjMilyuQEfRfueOqjjtZ1um3PuDTG1ha6iEvtR37x7tC5YAN2BscPwJs-1u4IvzhudXQBcKF9Y3WNF95DiHjb-8EOzge8C7Y74G3rvpI3PQBe1NEONp7xEnTsRxnbDpfl6g5dG90GmP33FO2W5WvxlKw3q-disU5smqqYVHkmGyaVIJVR3BjepA1wU0vOOeScNgAp4Q0VQomsTmmVmRo4qxqpK6Fqzabo4e_XAsD-5O1R-_M-JSzjJGXsB4M5ZgA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.22489/CinC.2023.096 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISBN | 9798350382525 |
| EISSN | 2325-887X |
| EndPage | 4 |
| ExternalDocumentID | 10364013 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 NQS OCL OK1 RIE RIL RIO |
| ID | FETCH-LOGICAL-i119t-b768d38950bf94ff4d1de4fc8444e742dee104d255956c12b6fce43bd8ab59ca3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:24:33 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-b768d38950bf94ff4d1de4fc8444e742dee104d255956c12b6fce43bd8ab59ca3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_10364013 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Oct.-1 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-1 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computing in cardiology |
| PublicationTitleAbbrev | CINC |
| PublicationYear | 2023 |
| Publisher | CinC |
| Publisher_xml | – name: CinC |
| SSID | ssj0000578968 |
| Score | 1.8460433 |
| Snippet | This study, part of 'Predicting Neurological Recovery from Coma After Cardiac Arrest: The George B. Moody PhysioNet Challenge 2023', evaluated a... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Cardiac arrest Computational efficiency Electroencephalography Recording Root mean square Training Training data |
| Title | Computationally Efficient Early Prognosis of the Outcome of Comatose Cardiac Arrest Survivors Using Slow-Wave Activity Features in EEG |
| URI | https://ieeexplore.ieee.org/document/10364013 |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVohRAntiJ2-cA1pUmcxccqSuEApVJZeqtieyxFqhLUJEX8AN_N2CntiQO3JLITyTPOzPMsj5DbKJKeinAjoa5oB_1bcEw0y2Gg4izOXC-0STRvj9F4HM9mfLIuVre1MABgk8-gby5tLF-VsjFHZbjD_dDggQ7pRFHUFmttDlTQ8Yh5GLeNGdEwxfwuyYukb_jB-wPblH9Ln2Ktx-jgn989JL1tHR6dbCzMEdmB4pjsPa3D4Sfku-VkWJ_nLb5oahtC4MuobVxsJptEuryipabo6tHnpkYVA3OLcxFwV0ATqySSDi1PB502-PdYlcuK2nQCOl2Un857tgI6lC3VBDV-Y4ODaV7QNL3vkddR-pI8OGtiBSd3XV47AjGGQk8lGAjNmdZMuQqYljFjDBArKwBEacqgjSCUrmcKgoD5AsUnAi4z_5R0i7KAM0KlFwhXBVxzTzDOAiGCSPo6G4Ta94Vg56Rn1nP-0fbOmP8u5cUfzy_JvhFYmy53Rbr1soFrsitXdV4tb6zEfwCm-q8Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oGvXkC-PbPXgt0nb72CMhIEZAElC5ke7ubNKEtAYoxj_g73Z2i3Dy4K1tdttkZ7Yz387jI-Q-iqSnItxIqCvaQf8WHBPNchioOIkT1wttEs1bN-r34_GYD1bF6rYWBgBs8hnUzKWN5atcFuaoDHe4Hxo8sE12AsY8tyzXWh-poOsR8zAuWzOiaYr5QzPNmjXDEF6r27b8GwIVaz_ah__88hGpbirx6GBtY47JFmQnZK-3Coifku-SlWF1ojf9oi3bEgJfRm3rYjPZpNKlc5pris4efSkWqGRgbnEuQu450KZVE0kblqmDDgv8fyzz2ZzahAI6nOafznuyBNqQJdkENZ5jgYNpmtFW67FKXtutUbPjrKgVnNR1-cIRiDIU-ipBXWjOtGbKVcC0jBljgGhZASBOUwZvBKF0PVMSBMwXKEARcJn4Z6SS5RmcEyq9QLgq4Jp7gnEWCBFE0tdJPdS-LwS7IFWznpOPsnvG5HcpL_94fkf2O6Ned9J96j9fkQMjvDJ57ppUFrMCbsiuXC7S-ezWSv8H6oGyVw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Computing+in+cardiology&rft.atitle=Computationally+Efficient+Early+Prognosis+of+the+Outcome+of+Comatose+Cardiac+Arrest+Survivors+Using+Slow-Wave+Activity+Features+in+EEG&rft.au=Salminen%2C+Miikka&rft.au=Partala%2C+Juha&rft.au=Vayrynen%2C+Eero&rft.au=Kortelainen%2C+Jukka&rft.date=2023-10-01&rft.pub=CinC&rft.eissn=2325-887X&rft.volume=50&rft.spage=1&rft.epage=4&rft_id=info:doi/10.22489%2FCinC.2023.096&rft.externalDocID=10364013 |