Automatic Control of Wall-following Mobile Robots Based on Machine Learning

Mobile robots have become increasingly popular in various industries and applications due to their versatility and ability to perform tasks safely, effectively, and independently. They can operate in hazardous or inaccessible areas, thus reducing the risk of injury to human workers. Mobile robots ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference S. 166 - 169
Hauptverfasser: Hammoud, Moahmmed, Lupin, Sergey
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 29.01.2024
Schlagworte:
ISSN:2376-6565
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Mobile robots have become increasingly popular in various industries and applications due to their versatility and ability to perform tasks safely, effectively, and independently. They can operate in hazardous or inaccessible areas, thus reducing the risk of injury to human workers. Mobile robots can also work continuously without breaks, thus increasing productivity and reducing labor costs. Wall-following mobile robots (WMRs) use sensors and algorithms to detect and avoid obstacles while maintaining a constant distance from them. They are instrumental in environments with narrow passages or limited visibility, such as underground tunnels or mines. This study used a benchmark dataset collected by the SCITOS G5 robot to evaluate various Machine Learning (ML) algorithms. This research guides on selecting an ML algorithm to achieve a balance between accuracy and memory consumption. The experiments showed that eXtreme Gradient Boosting (XGB) performed the best with a macro F1-score of 0.9934 on 24 sensor readings.
AbstractList Mobile robots have become increasingly popular in various industries and applications due to their versatility and ability to perform tasks safely, effectively, and independently. They can operate in hazardous or inaccessible areas, thus reducing the risk of injury to human workers. Mobile robots can also work continuously without breaks, thus increasing productivity and reducing labor costs. Wall-following mobile robots (WMRs) use sensors and algorithms to detect and avoid obstacles while maintaining a constant distance from them. They are instrumental in environments with narrow passages or limited visibility, such as underground tunnels or mines. This study used a benchmark dataset collected by the SCITOS G5 robot to evaluate various Machine Learning (ML) algorithms. This research guides on selecting an ML algorithm to achieve a balance between accuracy and memory consumption. The experiments showed that eXtreme Gradient Boosting (XGB) performed the best with a macro F1-score of 0.9934 on 24 sensor readings.
Author Lupin, Sergey
Hammoud, Moahmmed
Author_xml – sequence: 1
  givenname: Moahmmed
  surname: Hammoud
  fullname: Hammoud, Moahmmed
  email: hammoudmsh93@gmail.com
  organization: National Research University of Electronic Technology,Institute of Microdevices and Control Systems,Moscow,Russia
– sequence: 2
  givenname: Sergey
  surname: Lupin
  fullname: Lupin, Sergey
  email: lupin@miee.ru
  organization: National Research University of Electronic Technology,Institute of Microdevices and Control Systems,Moscow,Russia
BookMark eNo1j8FKxDAURaMoOI79Axf5gY5JXps0y7GMo9hBEMXlkKQvGskk0lbEv7egrs7mcrjnnJyknJAQytmKc6avNrHNSXIFbCWYqFacVbKBpjkihVa6gZqBZBL0MVkIULKUtazPSDGO74wxIbhWolmQ-_XnlA9mCo7OumnIkWZPX0yMpc8x5q-QXuku2xCRPmabp5FemxF7mhPdGfcWEtIOzZDm3QU59SaOWPxxSZ5vNk_tbdk9bO_adVcGzvVUGq-11KbiQiLXvdLzPcettqqXTljoAQG9MN4wgbxmjRcIDqSTWAlbW1iSy19vQMT9xxAOZvje__fDD4q6Ud8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ElCon61730.2024.10468388
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350360639
9798350360646
EISSN 2376-6565
EndPage 169
ExternalDocumentID 10468388
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-af9969a4126e19d79237c1b9b7d6c2b3d3e3ef2afa02e1508f2e3c36c6e42b5b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:17:05 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-af9969a4126e19d79237c1b9b7d6c2b3d3e3ef2afa02e1508f2e3c36c6e42b5b3
PageCount 4
ParticipantIDs ieee_primary_10468388
PublicationCentury 2000
PublicationDate 2024-Jan.-29
PublicationDateYYYYMMDD 2024-01-29
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.-29
  day: 29
PublicationDecade 2020
PublicationTitle IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference
PublicationTitleAbbrev ElCon
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002219728
Score 1.858874
Snippet Mobile robots have become increasingly popular in various industries and applications due to their versatility and ability to perform tasks safely,...
SourceID ieee
SourceType Publisher
StartPage 166
SubjectTerms machine learning
Mobile robot
Multi-category classification
SCITOS G5
wall-following robot
Title Automatic Control of Wall-following Mobile Robots Based on Machine Learning
URI https://ieeexplore.ieee.org/document/10468388
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62eNCLr4pvcvC67W6yu0mOWloEaSmi0FvJYyIF2Ui7q3_fJH2oBw9eQggZCDOQYV7fh9BtSZWQKueJ5EWR5KawibSF9Itl2gJnWthINsHGYz6disl6WD3OwgBAbD6DbtjGWr5xugmpsl6oR3LKeQu1GGOrYa1tQoWQwKDFN906qegN3vqu8h6apj4OJHl3I_6LSCX6keHBP19wiDrfE3l4svU1R2gHqmO0_wNM8AQ93jW1iwCsuL_qP8fO4pAoT6w3tvv0t_DIKf8N4CenXL3E996FGewqPIotlYDXaKuvHfQyHDz3H5I1VUIyzzJRe9X6uEXIPCMlZMIEUECmMyUUM6UmihoKFCyRVqYEAgS8JUA1LXUJOVGFoqeoXbkKzhAGnWVWpV4WIJeGi9QqyYwqBKepLM056gS9zN5XaBizjUou_ji_RHtB-yFtQcQVateLBq7Rrv6o58vFTbThF6Yynx0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5aBfXiVnE3B6_TziSzJEctLZUuFFHorWR5kYJMpJ3q3zdJW5eDBy8hhCSE9yCPt30fQrc5lVzIlEWCZVmU6sxEwmTCDaZQBlihuAlkE8VwyMZjPlo1q4deGAAIxWfQ8NOQy9dWLXyorOnzkYwytom2sjQlybJd6yukQojn0GLrep2YN9uvLVs6G01j5wmStLG-4BeVSrAknf1_vuEA1b978vDoy9ocog0oj9DeDzjBY9S7W1Q2QLDi1rICHVuDfag8Mk7d9sPtwgMr3UeAH6201RzfOyOmsS3xIBRVAl7hrb7U0XOn_dTqRiuyhGiaJLxywnWeCxdpQnJIuPawgIVKJJeFzhWRVFOgYIgwIibgQeANAapornJIicwkPUG10pZwijCoJDEydmcBUqEZj40UhZYZZzQWuT5DdS-XydsSD2OyFsn5H-s3aKf7NOhP-g_D3gXa9ZrwQQzCL1Gtmi3gCm2r92o6n10HfX4CHLOiZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+NW+Russia+Young+Researchers+in+Electrical+and+Electronic+Engineering+Conference&rft.atitle=Automatic+Control+of+Wall-following+Mobile+Robots+Based+on+Machine+Learning&rft.au=Hammoud%2C+Moahmmed&rft.au=Lupin%2C+Sergey&rft.date=2024-01-29&rft.pub=IEEE&rft.eissn=2376-6565&rft.spage=166&rft.epage=169&rft_id=info:doi/10.1109%2FElCon61730.2024.10468388&rft.externalDocID=10468388