An Encoder-Sequencer-Decoder Network for Lane Detection to Facilitate Autonomous Driving

Lane detection in all weather conditions is a pressing necessity for autonomous driving. Accurate lane detection ensures the safe operation of autonomous vehicles, enabling advanced driver assistance systems to effectively track and maintain the vehicle within the lanes. Traditional lane detection t...

Full description

Saved in:
Bibliographic Details
Published in:International Conference on Control, Automation and Systems (Online) pp. 899 - 904
Main Authors: Hussain, Muhammad Ishfaq, Rafique, Muhammad Aasim, Ko, Yeongmin, Khan, Zafran, Olimov, Farrukh, Naz, Zubia, Kim, Jeongbae, Jeon, Moongu
Format: Conference Proceeding
Language:English
Published: ICROS 17.10.2023
Subjects:
ISSN:2642-3901
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Lane detection in all weather conditions is a pressing necessity for autonomous driving. Accurate lane detection ensures the safe operation of autonomous vehicles, enabling advanced driver assistance systems to effectively track and maintain the vehicle within the lanes. Traditional lane detection techniques heavily rely on a single image frame captured by the camera, posing limitations. Moreover, these conventional methods demand a constant stream of pristine images for uninterrupted lane detection, resulting in degraded performance when faced with challenges such as low brightness, shadows, occlusions, and deteriorating environmental conditions. Recognizing that continuous sequence patterns on the road represent lanes, our approach leverages a sequential model to process multiple images for lane detection. In this study, we propose a deep neural network model to extract crucial lane information from a sequence of images. Our model adopts a convolutional neural network in an encoder/decoder architecture and incorporates an extended short-term memory model for sequential feature extraction. We evaluate the performance of our proposed model using the TuSimple and CuLane datasets, showcasing its superiority across various lane detection scenarios. Comparative analysis with state-of-the-art lane detection methods further substantiates our model's effectiveness.
AbstractList Lane detection in all weather conditions is a pressing necessity for autonomous driving. Accurate lane detection ensures the safe operation of autonomous vehicles, enabling advanced driver assistance systems to effectively track and maintain the vehicle within the lanes. Traditional lane detection techniques heavily rely on a single image frame captured by the camera, posing limitations. Moreover, these conventional methods demand a constant stream of pristine images for uninterrupted lane detection, resulting in degraded performance when faced with challenges such as low brightness, shadows, occlusions, and deteriorating environmental conditions. Recognizing that continuous sequence patterns on the road represent lanes, our approach leverages a sequential model to process multiple images for lane detection. In this study, we propose a deep neural network model to extract crucial lane information from a sequence of images. Our model adopts a convolutional neural network in an encoder/decoder architecture and incorporates an extended short-term memory model for sequential feature extraction. We evaluate the performance of our proposed model using the TuSimple and CuLane datasets, showcasing its superiority across various lane detection scenarios. Comparative analysis with state-of-the-art lane detection methods further substantiates our model's effectiveness.
Author Olimov, Farrukh
Naz, Zubia
Hussain, Muhammad Ishfaq
Rafique, Muhammad Aasim
Ko, Yeongmin
Jeon, Moongu
Khan, Zafran
Kim, Jeongbae
Author_xml – sequence: 1
  givenname: Muhammad Ishfaq
  surname: Hussain
  fullname: Hussain, Muhammad Ishfaq
  email: ishfaqhussain@gm.gist.ac.kr
  organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology,South Korea
– sequence: 2
  givenname: Muhammad Aasim
  surname: Rafique
  fullname: Rafique, Muhammad Aasim
  email: mrafique@kfu.edu.sa
  organization: College of Computer Sciences and Information Technology, King Faisal University,Department of Information Systems,Al Ahsa,Saudi Arabia,31982
– sequence: 3
  givenname: Yeongmin
  surname: Ko
  fullname: Ko, Yeongmin
  email: koyeongmin@gm.gist.ac.kr
  organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology,South Korea
– sequence: 4
  givenname: Zafran
  surname: Khan
  fullname: Khan, Zafran
  email: zafrankhan1830@gm.gist.ac.kr
  organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology,South Korea
– sequence: 5
  givenname: Farrukh
  surname: Olimov
  fullname: Olimov, Farrukh
  email: olimov.farrukh@gm.gist.ac.kr
  organization: Monitorapp,Threat Intelligence Team,Seoul,South Korea
– sequence: 6
  givenname: Zubia
  surname: Naz
  fullname: Naz, Zubia
  email: zubianaz@gm.gist.ac.kr
  organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology,South Korea
– sequence: 7
  givenname: Jeongbae
  surname: Kim
  fullname: Kim, Jeongbae
  email: j0k9262@gmail.com
  organization: Pusan National University,Pusan,South Korea
– sequence: 8
  givenname: Moongu
  surname: Jeon
  fullname: Jeon, Moongu
  email: mgjeon@gist.ac.kr
  organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology,South Korea
BookMark eNo1kMtOwzAUBQ0Cibb0D1iYD0iwfR0_llHaQqUIFgWJXeUkN8jQ2pC4IP4exGN1RrOYxZmSkxADEnLJWS7Acnu1rqpyU1jQOhdMQM4ZcGWMPCJTYy0IXghtjslEKCkysIyfkfk4PjPGQDDJlJmQxzLQZWhjh0O2wbcDhvabFvhj6C2mjzi80D4OtHYB6QITtsnHQFOkK9f6nU8uIS0PKYa4j4eRLgb_7sPTOTnt3W7E-d_OyMNqeV_dZPXd9boq68xzblPmWtWjtJ1WRqlGSc46LjvNOhAgnDTcIjQtGAW6kciFFqZxRkoodF_YvocZufjtekTcvg5-74bP7f8T8AVVMFT7
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/ICCAS59377.2023.10316884
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 8993215278
9788993215274
EISSN 2642-3901
EndPage 904
ExternalDocumentID 10316884
Genre orig-research
GrantInformation_xml – fundername: Korea Creative Content Agency
  funderid: 10.13039/501100006465
– fundername: Institute of Information & Communications Technology Planning & Evaluation (IITP)
  funderid: 10.13039/501100008122
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-ac6fe49d76866b6410d14d70d3232a4819e3bc38637b4e12728ba844357f59ff3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:24:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-ac6fe49d76866b6410d14d70d3232a4819e3bc38637b4e12728ba844357f59ff3
PageCount 6
ParticipantIDs ieee_primary_10316884
PublicationCentury 2000
PublicationDate 2023-Oct.-17
PublicationDateYYYYMMDD 2023-10-17
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-17
  day: 17
PublicationDecade 2020
PublicationTitle International Conference on Control, Automation and Systems (Online)
PublicationTitleAbbrev ICCAS
PublicationYear 2023
Publisher ICROS
Publisher_xml – name: ICROS
SSID ssj0003204068
Score 1.8479018
Snippet Lane detection in all weather conditions is a pressing necessity for autonomous driving. Accurate lane detection ensures the safe operation of autonomous...
SourceID ieee
SourceType Publisher
StartPage 899
SubjectTerms Autonomous Driving and Robotics
Convolutional LSTM
Decoding
Encoder and Decoder Network
Feature extraction
Lane detection
Process control
Roads
Semantic segmentation
Streaming media
TuSimple
Title An Encoder-Sequencer-Decoder Network for Lane Detection to Facilitate Autonomous Driving
URI https://ieeexplore.ieee.org/document/10316884
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA86RPTia-KbCF6zNW2ax3HsgYKMwRR2G2kesEsqXevfb5JuUw8evJVAoeQr-X79-nsA8JRZTYmyDOXK5sj3Y4qETIOLqMcHOdNEJDaGTbDplC8WYrYRq0ctjDEmks9ML1zGf_m6VE0YlfVDJAHlnOyDfcZoK9baDVSy1L-PlB-Cx0hvFlj0X4bDwTz3DZj1Qkp4b3v_rySV2EgmJ_98hFPQ_Zbkwdmu2ZyBPePOwfEPN8ELsBg4OHZBo16h-YYhXaGRiStw2vK9oQep8FU6A0emjjQsB-sSTqRq7boNHDR1EDqUzRqOqlWYN3TB-2T8NnxGm-AEtMJY1Egqag0R2n9KUFpQghONiWaJzjx-ksSDAJMVKuM0YwUxOGUpLyQnvlLM5sLa7BJ0XOnMFYBBektDeASTKpjPS48I8twEm65Eao6vQTds0vKj9cZYbvfn5o_1W3AUShFOf8zuQKeuGnMPDtRnvVpXD7GiXwWqnyU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagII6Fq4gbI7G65PA5Vj3UihJVapG6Va5jS10SlCb8fmynLTAwsEUeosjP0vvy_B0APMcmpVgZhogyBNl-TJGQkXMRtfiAsBSLwPiwCZYkfDYT47VY3WthtNaefKZb7tHf5ae5qtyo7MVFElDO8S7YIxhHQS3X2o5U4sieSMoPwJMnOItQvAw7nfaE2BbMWi4nvLV5w68sFd9K-if__IhT0PwW5cHxtt2cgR2dnYPjH36CF2DWzmAvcyr1Ak3WHOkCdbVfgUnN-IYWpsKRzDTs6tITsTJY5rAvVW3YrWG7Kp3UIa9WsFss3cShCd77vWlngNbRCWgZhqJEUlGjsUjtzwSlC4rDIA1xyoI0tghKYgsDdLxQMacxW2AdRiziC8mxrRUzRBgTX4JGlmf6CkAnvqUuPoJJ5eznpcUEhGhn1BXIlIfXoOk2af5Ru2PMN_tz88f6IzgcTN9G89Eweb0FR64sNYHwDjTKotL3YF99lstV8eCr-wV-YaJp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Automation+and+Systems+%28Online%29&rft.atitle=An+Encoder-Sequencer-Decoder+Network+for+Lane+Detection+to+Facilitate+Autonomous+Driving&rft.au=Hussain%2C+Muhammad+Ishfaq&rft.au=Rafique%2C+Muhammad+Aasim&rft.au=Ko%2C+Yeongmin&rft.au=Khan%2C+Zafran&rft.date=2023-10-17&rft.pub=ICROS&rft.eissn=2642-3901&rft.spage=899&rft.epage=904&rft_id=info:doi/10.23919%2FICCAS59377.2023.10316884&rft.externalDocID=10316884