Speech Intelligibility Enhancement for Cochlear Implant using Multi-Objective Deep Denoising Autoencoder

This study introduces a novel technique for enhancing the performance of deep denoising autoencoders (DDAE) in speech processing for cochlear implants (CIs). For individuals with hearing loss, cochlear implants are electronic devices that help to restore their ability to hear. However, the performan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual IEEE India Conference S. 173 - 178
Hauptverfasser: Prasanna Vishnu, Barre Uma, Poluboina, Venkateswarlu, B, Sushma, Pulikala, Aparna
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 14.12.2023
Schlagworte:
ISSN:2325-9418
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study introduces a novel technique for enhancing the performance of deep denoising autoencoders (DDAE) in speech processing for cochlear implants (CIs). For individuals with hearing loss, cochlear implants are electronic devices that help to restore their ability to hear. However, the performance of CIs speech intelligibility in the noisy environment is limited. One of the most commonly used methods for reducing noise in CIs is through a preprocessing technique called deep denoising autoencoder. DDAE models have shown potential in learning various noise patterns, but their performance in enhancing speech intelligibility is relatively low due to a ineffective objective function. To address this limitation, this study proposes a multi-objective technique to fine-tune the DDAE model. When multiple objectives are optimized simultaneously, the model becomes more robust and better at handling real-time noise. Based on the experimental findings, it has been confirmed that the proposed multi-objective learning technique performs better than other models when it comes to speech intelligibility. Furthermore, the enhanced signal is presented to the acoustic cochlear implant simulator to evaluate the improvement of speech intelligibility in CIs.
AbstractList This study introduces a novel technique for enhancing the performance of deep denoising autoencoders (DDAE) in speech processing for cochlear implants (CIs). For individuals with hearing loss, cochlear implants are electronic devices that help to restore their ability to hear. However, the performance of CIs speech intelligibility in the noisy environment is limited. One of the most commonly used methods for reducing noise in CIs is through a preprocessing technique called deep denoising autoencoder. DDAE models have shown potential in learning various noise patterns, but their performance in enhancing speech intelligibility is relatively low due to a ineffective objective function. To address this limitation, this study proposes a multi-objective technique to fine-tune the DDAE model. When multiple objectives are optimized simultaneously, the model becomes more robust and better at handling real-time noise. Based on the experimental findings, it has been confirmed that the proposed multi-objective learning technique performs better than other models when it comes to speech intelligibility. Furthermore, the enhanced signal is presented to the acoustic cochlear implant simulator to evaluate the improvement of speech intelligibility in CIs.
Author B, Sushma
Prasanna Vishnu, Barre Uma
Poluboina, Venkateswarlu
Pulikala, Aparna
Author_xml – sequence: 1
  givenname: Barre Uma
  surname: Prasanna Vishnu
  fullname: Prasanna Vishnu, Barre Uma
  organization: National Institute of Technology Karnataka,Department of Electronics and Communication Engineering,Surathkal,Karnataka,India
– sequence: 2
  givenname: Venkateswarlu
  surname: Poluboina
  fullname: Poluboina, Venkateswarlu
  organization: National Institute of Technology Karnataka,Department of Electronics and Communication Engineering,Surathkal,Karnataka,India
– sequence: 3
  givenname: Sushma
  surname: B
  fullname: B, Sushma
  organization: CMR Institute of Technology,Department of Electronics and Communication Engineering,Bengaluru,Karnataka,India,560037
– sequence: 4
  givenname: Aparna
  surname: Pulikala
  fullname: Pulikala, Aparna
  organization: National Institute of Technology Karnataka,Department of Electronics and Communication Engineering,Surathkal,Karnataka,India
BookMark eNo1kMtOwzAURA0CCSj9AxYW-5TrRxp7WaUFIpV2Aawr17luXLlOlLhI_XsqHpsZ6Yx0FnNHrmIbkZBHBhPGQD9Vq3lVrle51rKYcOBiwkBKKCRckLEutBI5CMhzLS7JLRc8z7Rk6oaMh2EPAByAsVzekua9Q7QNrWLCEPzOb33w6UQXsTHR4gFjoq7tadnaJqDpaXXogjnD4-Djjr4dQ_LZertHm_wX0jlid47Y-p95dkwtRtvW2N-Ta2fCgOO_HpHP58VH-Zot1y9VOVtmnjGdMo0ABpTg1nBppminjjNj3ZZLpSwHJZ1ide0KaZ2xtgaNThjNJbNYW23EiDz8ej0ibrreH0x_2vyfI74B6JNeYA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/INDICON59947.2023.10440740
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350305593
EISSN 2325-9418
EndPage 178
ExternalDocumentID 10440740
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-9e00a0832ca24a6ec6f21acfb2488c2084f81ddf74cfaccd09ef3a9241cedc9a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:08:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-9e00a0832ca24a6ec6f21acfb2488c2084f81ddf74cfaccd09ef3a9241cedc9a3
PageCount 6
ParticipantIDs ieee_primary_10440740
PublicationCentury 2000
PublicationDate 2023-Dec.-14
PublicationDateYYYYMMDD 2023-12-14
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-14
  day: 14
PublicationDecade 2020
PublicationTitle Annual IEEE India Conference
PublicationTitleAbbrev INDICON
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002001154
Score 1.8539268
Snippet This study introduces a novel technique for enhancing the performance of deep denoising autoencoders (DDAE) in speech processing for cochlear implants (CIs)....
SourceID ieee
SourceType Publisher
StartPage 173
SubjectTerms Acoustics
Auditory system
Cochlear implant
Cochlear implants
Deep denoising autoencoder (DDAE)
Multi-objective learning
Noise measurement
Noise reduction
Performance evaluation
Speech enhancement
Title Speech Intelligibility Enhancement for Cochlear Implant using Multi-Objective Deep Denoising Autoencoder
URI https://ieeexplore.ieee.org/document/10440740
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCFryK-5YHVJXHcpB5RW0QllFYCpG6Vcz6TMiRVSZH499hOWmBgYImiRDpFd7F9Z997j5AbnmXczovIQCaKCaMFy2QQMezaPyZGEKi9asljkqa96VROGrC6x8Igom8-w4679Wf5uoSV2yqzI1zY-kPYCn07SeIarLXZUOE1tUxDLBoG8naUDkb9cdqVUiQdJxPeWRv4JaXiV5L7_X9-wwFpf2Py6GSz2hySLSyOyN4POsFjkj8tECGno4Zms258_aTDInexdYapzVFpv4TcqUVQRw1sPUtd8_sr9VhcNs7e6jmQDhAX9lKUc__6blWVjvVS47JNXu6Hz_0H1igpsHkYyopJDAJlky0OigtlQxAbHiowGbfjF3jQE8bmrdokAowC0IFEEylbmoWAGqSKTkirKAs8JTThcRR2jYxsZShiiJXUcaSzCEIlnY0z0nZOmy1qsozZ2l_nfzy_ILsuNK5DJBSXpFUtV3hFduCjmr8vr32IvwDhaKlG
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQQIWXkW88cCaEjtOUo-oDzWipJUoUrfKsc-kDElVUiT-PXaSFhgYWKIokU7RXWzf2fd9H0J3NEmomRfBkTwUDtOKOQl3PQd888cEIBmoUrVkGMZxezrl4xqsXmJhAKBsPoOWvS3P8lUuV3arzIxwZuoPZir0bZ8x6lZwrc2WCq3IZWpqUeLy-yjuRp1R7HPOwpYVCm-tTfwSUynXkv7BP7_iEDW_UXl4vFlvjtAWZMdo_weh4AlKnxcAMsVRTbRZtb5-4l6W2uhaw9hkqbiTy9TqRWBLDmx8i237-ysu0bjOKHmrZkHcBViYS5bPy9cPqyK3vJcKlk300u9NOgOn1lJw5oTwwuHgusKkW1QKyoQJQqApEVIn1IxgSd020yZzVTpkUgsplctBe8IUZ0SCklx4p6iR5RmcIRzSwCO-5p6pDVkgA8FV4KnEk0Rwa-McNa3TZouKLmO29tfFH89v0e5g8jScDaP48RLt2TDZfhHCrlCjWK7gGu3Ij2L-vrwpw_0F23KsjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Annual+IEEE+India+Conference&rft.atitle=Speech+Intelligibility+Enhancement+for+Cochlear+Implant+using+Multi-Objective+Deep+Denoising+Autoencoder&rft.au=Prasanna+Vishnu%2C+Barre+Uma&rft.au=Poluboina%2C+Venkateswarlu&rft.au=B%2C+Sushma&rft.au=Pulikala%2C+Aparna&rft.date=2023-12-14&rft.pub=IEEE&rft.eissn=2325-9418&rft.spage=173&rft.epage=178&rft_id=info:doi/10.1109%2FINDICON59947.2023.10440740&rft.externalDocID=10440740