Speech Intelligibility Enhancement for Cochlear Implant using Multi-Objective Deep Denoising Autoencoder
This study introduces a novel technique for enhancing the performance of deep denoising autoencoders (DDAE) in speech processing for cochlear implants (CIs). For individuals with hearing loss, cochlear implants are electronic devices that help to restore their ability to hear. However, the performan...
Gespeichert in:
| Veröffentlicht in: | Annual IEEE India Conference S. 173 - 178 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
14.12.2023
|
| Schlagworte: | |
| ISSN: | 2325-9418 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study introduces a novel technique for enhancing the performance of deep denoising autoencoders (DDAE) in speech processing for cochlear implants (CIs). For individuals with hearing loss, cochlear implants are electronic devices that help to restore their ability to hear. However, the performance of CIs speech intelligibility in the noisy environment is limited. One of the most commonly used methods for reducing noise in CIs is through a preprocessing technique called deep denoising autoencoder. DDAE models have shown potential in learning various noise patterns, but their performance in enhancing speech intelligibility is relatively low due to a ineffective objective function. To address this limitation, this study proposes a multi-objective technique to fine-tune the DDAE model. When multiple objectives are optimized simultaneously, the model becomes more robust and better at handling real-time noise. Based on the experimental findings, it has been confirmed that the proposed multi-objective learning technique performs better than other models when it comes to speech intelligibility. Furthermore, the enhanced signal is presented to the acoustic cochlear implant simulator to evaluate the improvement of speech intelligibility in CIs. |
|---|---|
| AbstractList | This study introduces a novel technique for enhancing the performance of deep denoising autoencoders (DDAE) in speech processing for cochlear implants (CIs). For individuals with hearing loss, cochlear implants are electronic devices that help to restore their ability to hear. However, the performance of CIs speech intelligibility in the noisy environment is limited. One of the most commonly used methods for reducing noise in CIs is through a preprocessing technique called deep denoising autoencoder. DDAE models have shown potential in learning various noise patterns, but their performance in enhancing speech intelligibility is relatively low due to a ineffective objective function. To address this limitation, this study proposes a multi-objective technique to fine-tune the DDAE model. When multiple objectives are optimized simultaneously, the model becomes more robust and better at handling real-time noise. Based on the experimental findings, it has been confirmed that the proposed multi-objective learning technique performs better than other models when it comes to speech intelligibility. Furthermore, the enhanced signal is presented to the acoustic cochlear implant simulator to evaluate the improvement of speech intelligibility in CIs. |
| Author | B, Sushma Prasanna Vishnu, Barre Uma Poluboina, Venkateswarlu Pulikala, Aparna |
| Author_xml | – sequence: 1 givenname: Barre Uma surname: Prasanna Vishnu fullname: Prasanna Vishnu, Barre Uma organization: National Institute of Technology Karnataka,Department of Electronics and Communication Engineering,Surathkal,Karnataka,India – sequence: 2 givenname: Venkateswarlu surname: Poluboina fullname: Poluboina, Venkateswarlu organization: National Institute of Technology Karnataka,Department of Electronics and Communication Engineering,Surathkal,Karnataka,India – sequence: 3 givenname: Sushma surname: B fullname: B, Sushma organization: CMR Institute of Technology,Department of Electronics and Communication Engineering,Bengaluru,Karnataka,India,560037 – sequence: 4 givenname: Aparna surname: Pulikala fullname: Pulikala, Aparna organization: National Institute of Technology Karnataka,Department of Electronics and Communication Engineering,Surathkal,Karnataka,India |
| BookMark | eNo1kMtOwzAURA0CCSj9AxYW-5TrRxp7WaUFIpV2Aawr17luXLlOlLhI_XsqHpsZ6Yx0FnNHrmIbkZBHBhPGQD9Vq3lVrle51rKYcOBiwkBKKCRckLEutBI5CMhzLS7JLRc8z7Rk6oaMh2EPAByAsVzekua9Q7QNrWLCEPzOb33w6UQXsTHR4gFjoq7tadnaJqDpaXXogjnD4-Djjr4dQ_LZertHm_wX0jlid47Y-p95dkwtRtvW2N-Ta2fCgOO_HpHP58VH-Zot1y9VOVtmnjGdMo0ABpTg1nBppminjjNj3ZZLpSwHJZ1ide0KaZ2xtgaNThjNJbNYW23EiDz8ej0ibrreH0x_2vyfI74B6JNeYA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/INDICON59947.2023.10440740 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798350305593 |
| EISSN | 2325-9418 |
| EndPage | 178 |
| ExternalDocumentID | 10440740 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i119t-9e00a0832ca24a6ec6f21acfb2488c2084f81ddf74cfaccd09ef3a9241cedc9a3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:08:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-9e00a0832ca24a6ec6f21acfb2488c2084f81ddf74cfaccd09ef3a9241cedc9a3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10440740 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Dec.-14 |
| PublicationDateYYYYMMDD | 2023-12-14 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec.-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Annual IEEE India Conference |
| PublicationTitleAbbrev | INDICON |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002001154 |
| Score | 1.8539268 |
| Snippet | This study introduces a novel technique for enhancing the performance of deep denoising autoencoders (DDAE) in speech processing for cochlear implants (CIs).... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 173 |
| SubjectTerms | Acoustics Auditory system Cochlear implant Cochlear implants Deep denoising autoencoder (DDAE) Multi-objective learning Noise measurement Noise reduction Performance evaluation Speech enhancement |
| Title | Speech Intelligibility Enhancement for Cochlear Implant using Multi-Objective Deep Denoising Autoencoder |
| URI | https://ieeexplore.ieee.org/document/10440740 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCFryK-5YHVJXHcpB5RW0QllFYCpG6Vcz6TMiRVSZH499hOWmBgYImiRDpFd7F9Z997j5AbnmXczovIQCaKCaMFy2QQMezaPyZGEKi9asljkqa96VROGrC6x8Igom8-w4679Wf5uoSV2yqzI1zY-kPYCn07SeIarLXZUOE1tUxDLBoG8naUDkb9cdqVUiQdJxPeWRv4JaXiV5L7_X9-wwFpf2Py6GSz2hySLSyOyN4POsFjkj8tECGno4Zms258_aTDInexdYapzVFpv4TcqUVQRw1sPUtd8_sr9VhcNs7e6jmQDhAX9lKUc__6blWVjvVS47JNXu6Hz_0H1igpsHkYyopJDAJlky0OigtlQxAbHiowGbfjF3jQE8bmrdokAowC0IFEEylbmoWAGqSKTkirKAs8JTThcRR2jYxsZShiiJXUcaSzCEIlnY0z0nZOmy1qsozZ2l_nfzy_ILsuNK5DJBSXpFUtV3hFduCjmr8vr32IvwDhaKlG |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQQIWXkW88cCaEjtOUo-oDzWipJUoUrfKsc-kDElVUiT-PXaSFhgYWKIokU7RXWzf2fd9H0J3NEmomRfBkTwUDtOKOQl3PQd888cEIBmoUrVkGMZxezrl4xqsXmJhAKBsPoOWvS3P8lUuV3arzIxwZuoPZir0bZ8x6lZwrc2WCq3IZWpqUeLy-yjuRp1R7HPOwpYVCm-tTfwSUynXkv7BP7_iEDW_UXl4vFlvjtAWZMdo_weh4AlKnxcAMsVRTbRZtb5-4l6W2uhaw9hkqbiTy9TqRWBLDmx8i237-ysu0bjOKHmrZkHcBViYS5bPy9cPqyK3vJcKlk300u9NOgOn1lJw5oTwwuHgusKkW1QKyoQJQqApEVIn1IxgSd020yZzVTpkUgsplctBe8IUZ0SCklx4p6iR5RmcIRzSwCO-5p6pDVkgA8FV4KnEk0Rwa-McNa3TZouKLmO29tfFH89v0e5g8jScDaP48RLt2TDZfhHCrlCjWK7gGu3Ij2L-vrwpw_0F23KsjQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Annual+IEEE+India+Conference&rft.atitle=Speech+Intelligibility+Enhancement+for+Cochlear+Implant+using+Multi-Objective+Deep+Denoising+Autoencoder&rft.au=Prasanna+Vishnu%2C+Barre+Uma&rft.au=Poluboina%2C+Venkateswarlu&rft.au=B%2C+Sushma&rft.au=Pulikala%2C+Aparna&rft.date=2023-12-14&rft.pub=IEEE&rft.eissn=2325-9418&rft.spage=173&rft.epage=178&rft_id=info:doi/10.1109%2FINDICON59947.2023.10440740&rft.externalDocID=10440740 |