Anisotropic Channel Equalization using optimized clustering and Kalman-HMM trained ADALINE

Artificial feature extraction models evolving around adaptive computational decisions which involve spectrum analysis and channel estimation for dedicated cognitive antenna allocation including smart pipelining applications has become a domain of interest for communication protocols which are specif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 4th International Conference on Computing and Communication Systems (I3CS) S. 1 - 7
Hauptverfasser: Mudiar, Priyanko Raj, Sarma, Kandarpa Kumar
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 16.03.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Artificial feature extraction models evolving around adaptive computational decisions which involve spectrum analysis and channel estimation for dedicated cognitive antenna allocation including smart pipelining applications has become a domain of interest for communication protocols which are specifically designed to meet the upcoming architectures and frameworks of 5G and 6G based WLAN/SCADA/DWWAN networks. A novel anisotropic clustering approach has been designed to provide channel equalization in an orthogonally multiplexed, multi-access transmission channel using constellation estimation and entropy interpolation, by using Calinski-Harabasz tuning condition over affinity propagation clusters while employing a novel Kalman optimized and Markov trained Adaptive Linear Neuron (ADALINE) based artificial perceptron layer (ApNN). HuangHilbert spectrum margins have been provided to interpretate signal improvement after equalization for a Rayleigh Fading channel undergoing Active White Gaussian Noise (AWGN). MQAM Modulation is considered over an Orthogonal Frequency Division Multiple Access (OF DMA) channel for experimental analysis in a virtual software defined Wireless Local Area Network (Vi-WLAN) environment.
AbstractList Artificial feature extraction models evolving around adaptive computational decisions which involve spectrum analysis and channel estimation for dedicated cognitive antenna allocation including smart pipelining applications has become a domain of interest for communication protocols which are specifically designed to meet the upcoming architectures and frameworks of 5G and 6G based WLAN/SCADA/DWWAN networks. A novel anisotropic clustering approach has been designed to provide channel equalization in an orthogonally multiplexed, multi-access transmission channel using constellation estimation and entropy interpolation, by using Calinski-Harabasz tuning condition over affinity propagation clusters while employing a novel Kalman optimized and Markov trained Adaptive Linear Neuron (ADALINE) based artificial perceptron layer (ApNN). HuangHilbert spectrum margins have been provided to interpretate signal improvement after equalization for a Rayleigh Fading channel undergoing Active White Gaussian Noise (AWGN). MQAM Modulation is considered over an Orthogonal Frequency Division Multiple Access (OF DMA) channel for experimental analysis in a virtual software defined Wireless Local Area Network (Vi-WLAN) environment.
Author Mudiar, Priyanko Raj
Sarma, Kandarpa Kumar
Author_xml – sequence: 1
  givenname: Priyanko Raj
  surname: Mudiar
  fullname: Mudiar, Priyanko Raj
  email: prmudiar8944@gmail.com
  organization: Gauhati University,Department of Electronics & Communication Engineering,Guwahati,India
– sequence: 2
  givenname: Kandarpa Kumar
  surname: Sarma
  fullname: Sarma, Kandarpa Kumar
  email: kandarpaks@gauhati.ac.in
  organization: Gauhati University,Department of Electronics & Communication Engineering,Guwahati,India
BookMark eNo1j8FOhDAURWuiCx3nD0zsD4B9LVi6JIgOkdGFunEzedBWm0BB6Cycrx-MurrJyc3JvRfk1A_eEHINLAZg6qYSxUuaCUhizriIgQGXPJUnZK2kykTKBBdSwjl5z72bhzANo2tp8Ynem46WX3vs3AGDGzzdz85_0GEMrncHo2nb7edgph-IXtNH7Hr00Wa7pWFC55dGfpfX1VN5Sc4sdrNZ_-WKvN2Xr8Umqp8fqiKvIwegQqQ0ZoYJkdg2VZkEiZkwsl02grLM8kRxFKqxyBvdKqW5Bq2zhqmFWwm3YkWufr3OGLMbJ9fj9L37vyyOWXxRBQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/I3CS58314.2023.10127257
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323771
EndPage 7
ExternalDocumentID 10127257
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-9da8e0334fc598717a83e7c35019f0f2492a39bfa2bdc99d2d1dd8b0992af7163
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:32 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-9da8e0334fc598717a83e7c35019f0f2492a39bfa2bdc99d2d1dd8b0992af7163
PageCount 7
ParticipantIDs ieee_primary_10127257
PublicationCentury 2000
PublicationDate 2023-March-16
PublicationDateYYYYMMDD 2023-03-16
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-March-16
  day: 16
PublicationDecade 2020
PublicationTitle 2023 4th International Conference on Computing and Communication Systems (I3CS)
PublicationTitleAbbrev I3CS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8256917
Snippet Artificial feature extraction models evolving around adaptive computational decisions which involve spectrum analysis and channel estimation for dedicated...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms 256-Quaternary Amplitude Modulation (256-QAM)
ADALINE
Affinity Propagation Clustering (AP-Clustering)
Calinski-Harabasz index (CH-index)
Channel estimation
Computational modeling
Entropy
Hidden Markov Model (HMM)
Hidden Markov models
Huang-Hilbert Transform (HHT)
Kalman optimized Kernel Recursive Least Square Algorithm (Kalman-KRLS)
Markov processes
Maximum Correntropy
Stochastic Gradient Ascent / Descent (SGA/SGD)
Transforms
Wireless LAN
Title Anisotropic Channel Equalization using optimized clustering and Kalman-HMM trained ADALINE
URI https://ieeexplore.ieee.org/document/10127257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6EePCkRozv9OC1sLtdaHskCIEohERNiBfS7XTNJrBLYNeDv95OAY0HD96aSZMm03Ye7ffNEHKv0K11VMw08pSdlRQsUTJmLrIwzjQEiFTwzSbEZCJnMzXdkdU9F8Za68FntolD_5cPhanwqayFtaiEO2M1UhNCbMlaO8xWGKjWiPee25KH-FQS8eZ-9q--Kd5tDI7_ueAJafwQ8Oj027WckgObn5G3bp5tinJdrDJDkRWQ2wXte1bklktJEcT-TgtnBZbZpwVqFhXWQUChzoE-6sVS52w4HlPfGcLN6D50n0aTfoO8DvovvSHbtUZgWRiqkinQ0gacx6lpK5fzCC25FQZ_CVUapFgGUHOVpDpKwCgFEYQAMnHhYKRTlyLxc1LPi9xeEMolaA7Oywdtd6HTSMcALkiMYxCB7djkkjRQMfPVtvrFfK-Tqz_k1-QI1Y84rbBzQ-rlurK35NB8lNlmfef37AsBxZi9
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl633Wyy3eRYaqWlDwpWKF5KNsnKQpst7daDv95M2ioePHgLQyAhj3kk3zeD0KMAs9YQLJDAU3ZaMglSwVngPAvlVEMISAVfbCIZDvlkIkZbsrrnwhhjPPjM1KDp__J1odbwVFaHXFSJO2P76CBmLCIbutYWtUVCUe_S1kvMKYHHkojWdv1_VU7xhuP55J9DnqLqDwUPj76NyxnaM_YcvTVtvirKZbHIFQZegDUz3Pa8yA2bEgOM_R0XTg_M80-jsZqtIRMCCKXVuCdnc2mDzmCAfW0I16P51Ox3h-0qen1uj1udYFscIcgJEWUgtOQmpJRlKhYu6kkkpyZR8E8osjCDRICSijSTUaqVEDrSRGueOocwkpkLkugFqtjCmkuEKdeSamfnw9hd6SySTGvnJjKmk9A0THqFqrAw08Um_8V0tybXf8gf0FFnPOhP3ex7N-gYtgJQW6Rxiyrlcm3u0KH6KPPV8t7v3xci15wE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+4th+International+Conference+on+Computing+and+Communication+Systems+%28I3CS%29&rft.atitle=Anisotropic+Channel+Equalization+using+optimized+clustering+and+Kalman-HMM+trained+ADALINE&rft.au=Mudiar%2C+Priyanko+Raj&rft.au=Sarma%2C+Kandarpa+Kumar&rft.date=2023-03-16&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FI3CS58314.2023.10127257&rft.externalDocID=10127257