Anisotropic Channel Equalization using optimized clustering and Kalman-HMM trained ADALINE
Artificial feature extraction models evolving around adaptive computational decisions which involve spectrum analysis and channel estimation for dedicated cognitive antenna allocation including smart pipelining applications has become a domain of interest for communication protocols which are specif...
Uloženo v:
| Vydáno v: | 2023 4th International Conference on Computing and Communication Systems (I3CS) s. 1 - 7 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
16.03.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Artificial feature extraction models evolving around adaptive computational decisions which involve spectrum analysis and channel estimation for dedicated cognitive antenna allocation including smart pipelining applications has become a domain of interest for communication protocols which are specifically designed to meet the upcoming architectures and frameworks of 5G and 6G based WLAN/SCADA/DWWAN networks. A novel anisotropic clustering approach has been designed to provide channel equalization in an orthogonally multiplexed, multi-access transmission channel using constellation estimation and entropy interpolation, by using Calinski-Harabasz tuning condition over affinity propagation clusters while employing a novel Kalman optimized and Markov trained Adaptive Linear Neuron (ADALINE) based artificial perceptron layer (ApNN). HuangHilbert spectrum margins have been provided to interpretate signal improvement after equalization for a Rayleigh Fading channel undergoing Active White Gaussian Noise (AWGN). MQAM Modulation is considered over an Orthogonal Frequency Division Multiple Access (OF DMA) channel for experimental analysis in a virtual software defined Wireless Local Area Network (Vi-WLAN) environment. |
|---|---|
| AbstractList | Artificial feature extraction models evolving around adaptive computational decisions which involve spectrum analysis and channel estimation for dedicated cognitive antenna allocation including smart pipelining applications has become a domain of interest for communication protocols which are specifically designed to meet the upcoming architectures and frameworks of 5G and 6G based WLAN/SCADA/DWWAN networks. A novel anisotropic clustering approach has been designed to provide channel equalization in an orthogonally multiplexed, multi-access transmission channel using constellation estimation and entropy interpolation, by using Calinski-Harabasz tuning condition over affinity propagation clusters while employing a novel Kalman optimized and Markov trained Adaptive Linear Neuron (ADALINE) based artificial perceptron layer (ApNN). HuangHilbert spectrum margins have been provided to interpretate signal improvement after equalization for a Rayleigh Fading channel undergoing Active White Gaussian Noise (AWGN). MQAM Modulation is considered over an Orthogonal Frequency Division Multiple Access (OF DMA) channel for experimental analysis in a virtual software defined Wireless Local Area Network (Vi-WLAN) environment. |
| Author | Mudiar, Priyanko Raj Sarma, Kandarpa Kumar |
| Author_xml | – sequence: 1 givenname: Priyanko Raj surname: Mudiar fullname: Mudiar, Priyanko Raj email: prmudiar8944@gmail.com organization: Gauhati University,Department of Electronics & Communication Engineering,Guwahati,India – sequence: 2 givenname: Kandarpa Kumar surname: Sarma fullname: Sarma, Kandarpa Kumar email: kandarpaks@gauhati.ac.in organization: Gauhati University,Department of Electronics & Communication Engineering,Guwahati,India |
| BookMark | eNo1j8FOhDAURWuiCx3nD0zsD4B9LVi6JIgOkdGFunEzedBWm0BB6Cycrx-MurrJyc3JvRfk1A_eEHINLAZg6qYSxUuaCUhizriIgQGXPJUnZK2kykTKBBdSwjl5z72bhzANo2tp8Ynem46WX3vs3AGDGzzdz85_0GEMrncHo2nb7edgph-IXtNH7Hr00Wa7pWFC55dGfpfX1VN5Sc4sdrNZ_-WKvN2Xr8Umqp8fqiKvIwegQqQ0ZoYJkdg2VZkEiZkwsl02grLM8kRxFKqxyBvdKqW5Bq2zhqmFWwm3YkWufr3OGLMbJ9fj9L37vyyOWXxRBQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/I3CS58314.2023.10127257 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350323771 |
| EndPage | 7 |
| ExternalDocumentID | 10127257 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-9da8e0334fc598717a83e7c35019f0f2492a39bfa2bdc99d2d1dd8b0992af7163 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:14:32 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-9da8e0334fc598717a83e7c35019f0f2492a39bfa2bdc99d2d1dd8b0992af7163 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10127257 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-March-16 |
| PublicationDateYYYYMMDD | 2023-03-16 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-March-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 4th International Conference on Computing and Communication Systems (I3CS) |
| PublicationTitleAbbrev | I3CS |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8256917 |
| Snippet | Artificial feature extraction models evolving around adaptive computational decisions which involve spectrum analysis and channel estimation for dedicated... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | 256-Quaternary Amplitude Modulation (256-QAM) ADALINE Affinity Propagation Clustering (AP-Clustering) Calinski-Harabasz index (CH-index) Channel estimation Computational modeling Entropy Hidden Markov Model (HMM) Hidden Markov models Huang-Hilbert Transform (HHT) Kalman optimized Kernel Recursive Least Square Algorithm (Kalman-KRLS) Markov processes Maximum Correntropy Stochastic Gradient Ascent / Descent (SGA/SGD) Transforms Wireless LAN |
| Title | Anisotropic Channel Equalization using optimized clustering and Kalman-HMM trained ADALINE |
| URI | https://ieeexplore.ieee.org/document/10127257 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aPHhSseI3OXhNu5vsNptjqS0ttqWgQvFS8jGRhXa3tFsP_nqTtFU8ePAWhkBgEmZeknlvEHpQETWgLCPWgQeSSBG7OKgNybQyaZKoNIOgMzvk43E2nYrJjqweuDAAEIrPoOGH4S_flHrjn8qaXouKuzN2iA4551uy1q5mK45Ec8A6z2nGYv9UQlljP_tX35SQNnon_1zwFNV_CHh48p1aztABFOforV3k67JalctcY88KKGCOu4EVueVSYl_E_o5LFwUW-ScYrOcbr4PgjbIw-EnOF7Ig_dEIh84Qbkb7sT0cjLt19NrrvnT6ZNcageRxLCoijMwgYiyxOhXuzsNlxoBr_0sobGS9DKBkQllJldFCGGpiYzLl4CCV1l2R2AWqFWUBlwhTDkI6GCcphcQ6gKBTyZRseaUuaiO4QnXvmNlyq34x2_vk-g_7DTr27vd1WnHrFtWq1Qbu0JH-qPL16j7s2RfpKJmt |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl633SS73c2x1EpLHxSsULyUPCay0O6WduvBX2-StooHD97CEJKQCTOTZL5vEHqUIdUgDQuMDR6CSHBi7aDSQaqkjqNIxil4ntl-MhymkwkfbcHqHgsDAD75DGqu6f_ydaHW7qms7rioEnvG9tGBHYeSDVxrm7VFQl7vstZLnDLiHksoq-36_6qc4h3H88k_pzxF1R8IHh59O5cztAf5OXpr5tmqKJfFIlPY4QJymOG2x0Vu0JTYpbG_48LagXn2CRqr2doxITihyDXuidlc5EFnMMC-NoTt0Xxq9rvDdhW9PrfHrU6wLY4QZITwMuBapBAyFhkVc3vrSUTKIFHun5Cb0DgiQMG4NIJKrTjXVBOtU2kDQiqMvSSxC1TJixwuEaYJcGEDOUEpRMaGCCoWTIqG4-qiJoQrVHUbM11s-C-muz25_kP-gI4640F_alffu0HHThUua4s0blGlXK7hDh2qjzJbLe-9_r4AF0ec9A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+4th+International+Conference+on+Computing+and+Communication+Systems+%28I3CS%29&rft.atitle=Anisotropic+Channel+Equalization+using+optimized+clustering+and+Kalman-HMM+trained+ADALINE&rft.au=Mudiar%2C+Priyanko+Raj&rft.au=Sarma%2C+Kandarpa+Kumar&rft.date=2023-03-16&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FI3CS58314.2023.10127257&rft.externalDocID=10127257 |