Optimal Linear Precoder Design for MIMO-OFDM Integrated Sensing and Communications Based on Bayesian Cramér-Rao Bound
In this paper, we investigate the fundamental limits of MIMO-OFDM integrated sensing and communications (ISAC) systems based on a Bayesian Cramér-Rao bound (BCRB) analysis. We derive the BCRB for joint channel parameter estimation and data symbol detection, in which a performance trade-off between b...
Uloženo v:
| Vydáno v: | IEEE Global Communications Conference (Online) s. 1314 - 1319 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
04.12.2023
|
| Témata: | |
| ISSN: | 2576-6813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we investigate the fundamental limits of MIMO-OFDM integrated sensing and communications (ISAC) systems based on a Bayesian Cramér-Rao bound (BCRB) analysis. We derive the BCRB for joint channel parameter estimation and data symbol detection, in which a performance trade-off between both functionalities is observed. We formulate the optimization problem for a linear precoder design and propose the stochastic Riemannian gradient descent (SRGD) approach to solve the non-convex problem. We analyze the optimality conditions and show that SRGD ensures convergence with high probability. The simulation results verify our analyses and also demonstrate a fast convergence speed. Finally, the performance trade-off is illustrated and investigated. |
|---|---|
| ISSN: | 2576-6813 |
| DOI: | 10.1109/GLOBECOM54140.2023.10437293 |