Optimal Linear Precoder Design for MIMO-OFDM Integrated Sensing and Communications Based on Bayesian Cramér-Rao Bound

In this paper, we investigate the fundamental limits of MIMO-OFDM integrated sensing and communications (ISAC) systems based on a Bayesian Cramér-Rao bound (BCRB) analysis. We derive the BCRB for joint channel parameter estimation and data symbol detection, in which a performance trade-off between b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Global Communications Conference (Online) s. 1314 - 1319
Hlavní autoři: Li, Xinyang, Andrei, Vlad C., Monich, Ullrich J., Boche, Holger
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 04.12.2023
Témata:
ISSN:2576-6813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we investigate the fundamental limits of MIMO-OFDM integrated sensing and communications (ISAC) systems based on a Bayesian Cramér-Rao bound (BCRB) analysis. We derive the BCRB for joint channel parameter estimation and data symbol detection, in which a performance trade-off between both functionalities is observed. We formulate the optimization problem for a linear precoder design and propose the stochastic Riemannian gradient descent (SRGD) approach to solve the non-convex problem. We analyze the optimality conditions and show that SRGD ensures convergence with high probability. The simulation results verify our analyses and also demonstrate a fast convergence speed. Finally, the performance trade-off is illustrated and investigated.
ISSN:2576-6813
DOI:10.1109/GLOBECOM54140.2023.10437293