A Vehicle Detection Method Based on Convolutional Neural Network Optimized by Genetic Algorithm

This manuscript introduces an advanced vehicle target detection algorithm which leverages the integration of improved underside shadow characteristics with a Convolutional Neural Network (CNN) optimized by genetic algorithms. Our approach augments underside shadow delineation through difference enha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International Conference on Intelligent Control and Information Processing (Online) s. 227 - 233
Hlavný autor: Sun, Qingqing
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 08.03.2024
Predmet:
ISSN:2835-9577
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This manuscript introduces an advanced vehicle target detection algorithm which leverages the integration of improved underside shadow characteristics with a Convolutional Neural Network (CNN) optimized by genetic algorithms. Our approach augments underside shadow delineation through difference enhancement techniques to amplify the grayscale contrast between shadows and the road surface. This, in turn, facilitates the precise extraction of road boundaries, streamlining the computational process when generating potential vehicle shadow candidates. By harnessing both the geometric and textural properties of the vehicle shadows, our algorithm eficiently sifts through and formulates viable vehicle presumptions. The innovative application of a genetic algorithm to fine-tune the CNN addresses the common pitfalls of local optima encountered with conventional CNN training methodologies, such as the gradient descent approach, which often initializes weights randomly. This optimization yields a substantial increment in the accuracy of vehicle detection. The algorithm's superior performance is further substantiated by comprehensive validation on a vast collection of real-world roadway images within MATLAB. This rigorous testing confirms the algorithm's adeptness in differentiating between genuine vehicle underside shadows and other interfering regions, consequently ensuring exceptionally reliable vehicle detection. The system shows remarkable adaptability and robustness across a variety of complex environments, characterized by fluctuating illumination, multiple tra fic lanes, and vehicles exhibiting diverse positions and orientations.
AbstractList This manuscript introduces an advanced vehicle target detection algorithm which leverages the integration of improved underside shadow characteristics with a Convolutional Neural Network (CNN) optimized by genetic algorithms. Our approach augments underside shadow delineation through difference enhancement techniques to amplify the grayscale contrast between shadows and the road surface. This, in turn, facilitates the precise extraction of road boundaries, streamlining the computational process when generating potential vehicle shadow candidates. By harnessing both the geometric and textural properties of the vehicle shadows, our algorithm eficiently sifts through and formulates viable vehicle presumptions. The innovative application of a genetic algorithm to fine-tune the CNN addresses the common pitfalls of local optima encountered with conventional CNN training methodologies, such as the gradient descent approach, which often initializes weights randomly. This optimization yields a substantial increment in the accuracy of vehicle detection. The algorithm's superior performance is further substantiated by comprehensive validation on a vast collection of real-world roadway images within MATLAB. This rigorous testing confirms the algorithm's adeptness in differentiating between genuine vehicle underside shadows and other interfering regions, consequently ensuring exceptionally reliable vehicle detection. The system shows remarkable adaptability and robustness across a variety of complex environments, characterized by fluctuating illumination, multiple tra fic lanes, and vehicles exhibiting diverse positions and orientations.
Author Sun, Qingqing
Author_xml – sequence: 1
  givenname: Qingqing
  surname: Sun
  fullname: Sun, Qingqing
  email: sunqingqing@qdec.edu.cn
  organization: Qingdao Engineering Vocational College,Department of Mechnical and Electrical Engineering,Qingdao,China,266112
BookMark eNo1kM1OwzAQhA0CiVL6BhzMA6Ss_2L7WAKUSkA5ANcqibfUkMZV4oLK02P-NIfR6ButNHtMDtrQIiFnDMaMgT2fFUkPORgwYw5cjhlIrbUVe2RktTVCgUiQwz4Z8JQyq7Q-IqO-fwVIiIHQbEAWE_qMK183SC8xYh19aOkdxlVw9KLs0dGUi9C-h2b7zcqG3uO2-7H4Ebo3Ot9Ev_afqVnt6BRbjL6mk-YldD6u1ifkcFk2PY7-fEierq8ei5vsdj6dFZPbzDNmY2YhF8qZpeG2tMxUugKtjAMjXJ0KkINEqSrgrsqVcLaSmktM65UUrlQohuT0965HxMWm8-uy2y3-fyK-AKtjV78
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICIP60808.2024.10477793
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350308020
EISSN 2835-9577
EndPage 233
ExternalDocumentID 10477793
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i119t-90635d8f829a918b7b0758d083dc1190604e45b02db653d9b4724e608543da5e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:09:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-90635d8f829a918b7b0758d083dc1190604e45b02db653d9b4724e608543da5e3
PageCount 7
ParticipantIDs ieee_primary_10477793
PublicationCentury 2000
PublicationDate 2024-March-8
PublicationDateYYYYMMDD 2024-03-08
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-8
  day: 08
PublicationDecade 2020
PublicationTitle International Conference on Intelligent Control and Information Processing (Online)
PublicationTitleAbbrev ICICIP
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003010371
Score 1.8628814
Snippet This manuscript introduces an advanced vehicle target detection algorithm which leverages the integration of improved underside shadow characteristics with a...
SourceID ieee
SourceType Publisher
StartPage 227
SubjectTerms Convolutional neural networks
Feature extraction
Genetic Algorithm
Hypothetical Vehicle
Interference
Lighting
Object detection
Roads
Support Vector Machine
Vehicle detection
Title A Vehicle Detection Method Based on Convolutional Neural Network Optimized by Genetic Algorithm
URI https://ieeexplore.ieee.org/document/10477793
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZohRATIIp4y0isafNwYnsshQoGSgdA3arYvtBIbYJKWgl-PWc3LWJgQBnykBNFdxffJ-e77wi5jkwMmKiNh2AfPMa076WR73shxEJqnAwF-K7ZBB8MxGgkh3WxuquFAQBHPoO2PXT_8k2pF3aprGNlBTgGVIM0OE9WxVqbBZXIdizgwQ65qnU0Ow893IYJYiLL4QpZe33_r04qLpH09_75Cvuk9VOSR4ebZHNAtqA4JOMufYWJ9Ty9hcqRqgr66HpC0xtMT4biOT5gWcdXOqVWjMPtHPubPuGMMcu_cKT6pFaCGuOIdqdv5TyvJrMWeenfPffuvbpjgpcHgaw8iYAjNiIToUxlIBRXiAiEQZhlNA6wQjnAYuWHRiVxZKRiPGSAFopZZNIYoiPSLMoCjglNtGJKaKkTjR-5UlLxTGuWIZ7JQPnJCWlZ64zfV6IY47VhTv-4fkZ2rQ8cfUuck2Y1X8AF2dbLKv-YXzpXfgMPdJ65
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oGvWkRoxv18RroY9tu3tE1EAE5ICGG-nuTqUJFIOFRH-9s8vDePBgeugjm00zM935sp35PkJuAx0CJmrtINgHhzHlOknguo4PIRcKF0MOrhWbiDsd3u-L7rJZ3fbCAIAtPoOKubT_8vVEzcxWWdXQCsQYUJtkK2TMdxftWustlcBoFsTeDrlZMmlWm3U8uhGiIlPF5bPKaoZfWio2lTzu__MlDkj5pymPdtfp5pBsQH5EBjX6CkPje3oPhS2rymnbqkLTO0xQmuI9TjBfRlgyooaOw55s_Td9xjVjnH3hSPlJDQk1RhKtjd4m06wYjsvk5fGhV284S80EJ_M8UTgCIUeoecp9kQiPy1giJuAagZZWOMBQ5QALpetrGYWBFpLFPgO0UMgCnYQQHJNSPsnhhNBISSa5EipS-JlLKWScKsVSRDQpSDc6JWVjncH7ghZjsDLM2R_Pr8luo9duDVrNztM52TP-sMVc_IKUiukMLsm2mhfZx_TKuvUbgIOiAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Intelligent+Control+and+Information+Processing+%28Online%29&rft.atitle=A+Vehicle+Detection+Method+Based+on+Convolutional+Neural+Network+Optimized+by+Genetic+Algorithm&rft.au=Sun%2C+Qingqing&rft.date=2024-03-08&rft.pub=IEEE&rft.eissn=2835-9577&rft.spage=227&rft.epage=233&rft_id=info:doi/10.1109%2FICICIP60808.2024.10477793&rft.externalDocID=10477793