Human resource recommendation algorithm based on convolutional neural network

Among various kinds of image recognition, the Chinese character recognition has a very wide range of application prospect and practical value, for example, can be used in sorting, license plate recognition, billboard recognition, identity CARDS, auxiliary blind people read scene, can realize automat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 IEEE International Conference on Control, Electronics and Computer Technology (ICCECT) s. 1343 - 1348
Hlavní autori: Liu, Jiakun, Li, Haoran, Wan, Li
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 28.04.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Among various kinds of image recognition, the Chinese character recognition has a very wide range of application prospect and practical value, for example, can be used in sorting, license plate recognition, billboard recognition, identity CARDS, auxiliary blind people read scene, can realize automatic recognition, reduce artificial operation, save time and manpower cost, convenient people's life. Deep learning mainly builds a neural network model with multiple hidden layers. In this paper, a large number of training samples are used to learn more useful features, so as to improve the prediction and classification accuracy of the network model. As an important network model of deep learning, convolutional neural network has the characteristics of hierarchical structure, weight sharing, regional local perception, feature extraction and global training combined with classification process, etc., and has been widely applied in the field of image recognition. In particular, deep convolutional neural network is currently a research hotspot. It is of great application value to study its own and its application in the identification of different samples.
AbstractList Among various kinds of image recognition, the Chinese character recognition has a very wide range of application prospect and practical value, for example, can be used in sorting, license plate recognition, billboard recognition, identity CARDS, auxiliary blind people read scene, can realize automatic recognition, reduce artificial operation, save time and manpower cost, convenient people's life. Deep learning mainly builds a neural network model with multiple hidden layers. In this paper, a large number of training samples are used to learn more useful features, so as to improve the prediction and classification accuracy of the network model. As an important network model of deep learning, convolutional neural network has the characteristics of hierarchical structure, weight sharing, regional local perception, feature extraction and global training combined with classification process, etc., and has been widely applied in the field of image recognition. In particular, deep convolutional neural network is currently a research hotspot. It is of great application value to study its own and its application in the identification of different samples.
Author Li, Haoran
Liu, Jiakun
Wan, Li
Author_xml – sequence: 1
  givenname: Jiakun
  surname: Liu
  fullname: Liu, Jiakun
  email: huachebin83075550@126.com
  organization: Shandong Youth University of Political Science,Jinan,China,250103
– sequence: 2
  givenname: Haoran
  surname: Li
  fullname: Li, Haoran
  organization: Shandong Youth University of Political Science,Jinan,China,250103
– sequence: 3
  givenname: Li
  surname: Wan
  fullname: Wan, Li
  organization: Shandong Youth University of Political Science,Jinan,China,250103
BookMark eNo1j8tOwzAURI1EF1D6ByzCByT42k5sL1FUaKUiNu268uMaIhIbOQmIv6e8Vmc0RxppLsl5TBEJuQFaAVB9u23bdbuvpeaqYpTxCigIACXOyEpLrXhNudaUqQvyuJkHE4uMY5qzw1NwaRgwejN1KRamf065m16GwpoRfXGqXIrvqZ-_temLiHP-wfSR8usVWQTTj7j645Ic7tf7dlPunh627d2u7AD0VCovLPVaKB3ASd1IZZTzkgYfnBWCCaakRasa8E1jattIz-pAA0fqQUnKl-T6d7dDxONb7gaTP4__L_kXTcFOmw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCECT57938.2023.10141184
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350399028
EndPage 1348
ExternalDocumentID 10141184
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-8d4b0d9489f1c79678a8cd70fdfcb4424287beb861d66a5b67d25f0f3e0d18703
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:15 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-8d4b0d9489f1c79678a8cd70fdfcb4424287beb861d66a5b67d25f0f3e0d18703
PageCount 6
ParticipantIDs ieee_primary_10141184
PublicationCentury 2000
PublicationDate 2023-April-28
PublicationDateYYYYMMDD 2023-04-28
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-April-28
  day: 28
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Control, Electronics and Computer Technology (ICCECT)
PublicationTitleAbbrev ICCECT
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8375548
Snippet Among various kinds of image recognition, the Chinese character recognition has a very wide range of application prospect and practical value, for example, can...
SourceID ieee
SourceType Publisher
StartPage 1343
SubjectTerms Character recognition
Convolutional neural network
Convolutional neural networks
Deep learning
Human resources
Image recognition
Neural networks
Predictive models
Recommendation algorithm
Training
Title Human resource recommendation algorithm based on convolutional neural network
URI https://ieeexplore.ieee.org/document/10141184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6siHhSseKbCF63TbLJJjkvLXqw9FCht5KnFvqQ2vr7TdKt4sGDp4QhTGCSMJnnB_DgS0wtN6ZQWmYIM1xIxXihMXXGWO1KHjLYhBgM5Hishk2xeq6F8d7n5DPfSdMcy3dLu0musm7ClY0fYtaClhDVtljrEO6bvpndp7ru1SMeb1zK2aJlZ7f-F3JKVhz9439ueQLtnxI8NPxWLqew5xdn8Jxd7mjVuNxRsmbnkcEWFwnp2esy2vpvc5R0k0ORlJLKm8ulZyg1r8xDTv1uw0u_N6ofiwYPoZgSotaFdMxgp5hUgVihoprR0jqBgwvWMEaT9WO8kRVxVaW5qYSjPOBQeuxIfJflOewvlgt_AYgQUzFuI79AmGdci0B1NEzj0TAfGV5CO8li8r5teTHZieHqD_o1HCWJpzALlTewv15t_C0c2M_19GN1lw_qC2bslx4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60inpSseLbCF63TXaT3eS8WFpsSw8Veit5aqEPqa2_3yTdKh48eEoYyAQmCZN5fgCPNsOpZkolQvIIYYYTLihLJE6NUlqajLkINlH0-3w0EoOqWD3WwlhrY_KZbYRpjOWbhV4HV1kz4Mr6DzHdhT1GaYo35VoH8FB1zmx2yvKpHDJ_50LWVpo1tit-YadE1dE6_uemJ1D_KcJDg2_1cgo7dn4Gveh0R8vK6Y6CPTvzDDbISEhOXxfe2n-boaCdDPKkkFZeXS85RaF9ZRxi8ncdXlpPw7KdVIgIyYQQsUq4oQobQblwRBfCKxrJtSmwM04rL5Fg_yireE5Mnkum8sKkzGGXWWyIf5nZOdTmi7m9AESIyinTnp8j1FImC5dKb5r6w6HWM7yEepDF-H3T9GK8FcPVH_R7OGwPe91xt9N_voajIP0QdEn5DdRWy7W9hX39uZp8LO_ioX0BcbmaZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Control%2C+Electronics+and+Computer+Technology+%28ICCECT%29&rft.atitle=Human+resource+recommendation+algorithm+based+on+convolutional+neural+network&rft.au=Liu%2C+Jiakun&rft.au=Li%2C+Haoran&rft.au=Wan%2C+Li&rft.date=2023-04-28&rft.pub=IEEE&rft.spage=1343&rft.epage=1348&rft_id=info:doi/10.1109%2FICCECT57938.2023.10141184&rft.externalDocID=10141184