Emotional Reactivity Classification Using Artificial Intelligence Based on Twitter in Bahasa Indonesia

Twitter is one of Indonesia's most widely used social media to express positive and negative emotions. Negative emotions are referred to as emotional reactivity, an example of which is depression. To detect emotional reactivity, Artificial Intelligence (AI) was used. With deep learning pretrain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 IEEE 3rd International Conference on Social Sciences and Intelligence Management (SSIM) S. 144 - 148
Hauptverfasser: Paramita, Greta V., Andangsari, Esther W., Kemala, Ade P., Ali, Moondore M., Putri, Trisa M., Puspita, Katarina I.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 15.12.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Twitter is one of Indonesia's most widely used social media to express positive and negative emotions. Negative emotions are referred to as emotional reactivity, an example of which is depression. To detect emotional reactivity, Artificial Intelligence (AI) was used. With deep learning pretrained model methods (IndoBERT and IndoBERTweet), AI successfully classified emotional reactivity. AI satisfactorily detected emotional reactivity on Twitter.
DOI:10.1109/SSIM59263.2023.10468872