Gesture-Based Control of Presentation Slides using OpenCV

This research work proposes a Human Machine Interaction (HMI) system that enables users to control PowerPoint presentations using hand gestures. By analyzing hand movements captured by a camera and utilizing computer vision algorithms, the system accurately recognizes and interprets gestures as comm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS) S. 1786 - 1791
Hauptverfasser: Vidya, M., Vineela, S., Sathish, P., Reddy, A. Supraja
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 23.08.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This research work proposes a Human Machine Interaction (HMI) system that enables users to control PowerPoint presentations using hand gestures. By analyzing hand movements captured by a camera and utilizing computer vision algorithms, the system accurately recognizes and interprets gestures as commands. The proposed system implementation incorporates machine learning techniques and the OpenCV module, allowing users to change slides without the need for keyboards or specialized gadgets. With real-time gesture recognition, users can control their presentations effortlessly and enhance accessibility. The system's potential applications include improving interaction with digital devices for individuals with limited access to traditional input devices.This proposed system highlights the significance of presentations and offers an innovative approach to nonverbal communication and human-computer interaction. By utilizing a camera and leveraging OpenCV Python, MediaPipe and PyWin32, the hand gesture presentation control system provides a user-friendly and efficient alternative for controlling PowerPoint slides. The system enhances the overall presentation experience by offering a more intuitive and natural means of interaction. The average accuracy of the proposed system is more than 93% for any distance from the camera.
AbstractList This research work proposes a Human Machine Interaction (HMI) system that enables users to control PowerPoint presentations using hand gestures. By analyzing hand movements captured by a camera and utilizing computer vision algorithms, the system accurately recognizes and interprets gestures as commands. The proposed system implementation incorporates machine learning techniques and the OpenCV module, allowing users to change slides without the need for keyboards or specialized gadgets. With real-time gesture recognition, users can control their presentations effortlessly and enhance accessibility. The system's potential applications include improving interaction with digital devices for individuals with limited access to traditional input devices.This proposed system highlights the significance of presentations and offers an innovative approach to nonverbal communication and human-computer interaction. By utilizing a camera and leveraging OpenCV Python, MediaPipe and PyWin32, the hand gesture presentation control system provides a user-friendly and efficient alternative for controlling PowerPoint slides. The system enhances the overall presentation experience by offering a more intuitive and natural means of interaction. The average accuracy of the proposed system is more than 93% for any distance from the camera.
Author Vineela, S.
Vidya, M.
Reddy, A. Supraja
Sathish, P.
Author_xml – sequence: 1
  givenname: M.
  surname: Vidya
  fullname: Vidya, M.
  email: mayreddyvidyareddy@gmail.com
  organization: Chaitanya Bharathi Institute of Technology,Department of Electronics & Communication Engineering,Hyderabad,Telangana,India
– sequence: 2
  givenname: S.
  surname: Vineela
  fullname: Vineela, S.
  email: singamvineela26@gmail.com
  organization: Chaitanya Bharathi Institute of Technology,Department of Electronics & Communication Engineering,Hyderabad,Telangana,India
– sequence: 3
  givenname: P.
  surname: Sathish
  fullname: Sathish, P.
  email: psathish_ece@cbit.ac.in
  organization: Chaitanya Bharathi Institute of Technology,Department of Electronics & Communication Engineering,Hyderabad,Telangana,India
– sequence: 4
  givenname: A. Supraja
  surname: Reddy
  fullname: Reddy, A. Supraja
  email: suprajareddy_ece@cbit.ac.in
  organization: Chaitanya Bharathi Institute of Technology,Department of Electronics & Communication Engineering,Hyderabad,Telangana,India
BookMark eNo1j81KAzEURiPoQmvfwEV8gBnvzY_JXeqgtVCoMK3bknZuJDBmymS68O0tqKtvczic70Zc5iGzEPcINSLQw7J5Wrat9ca7WoHSNYKyYBVciDk58tqCVtYRXQtacJlOI1fPoXAnmyFP49DLIcr3kQvnKUxpyLLtU8dFnkrKn3J95Nx83IqrGPrC87-die3ry6Z5q1brxTlgVSVEmipvMHYATnUmWocUgLQxJu5ROxsfEa3dAxpSNjqlFBNqf1ARzlCwB-f1TNz9ehMz745j-grj9-7_kf4BDvBD3g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAISS58487.2023.10250520
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350325799
EndPage 1791
ExternalDocumentID 10250520
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-841fd0072d4f5719a093444fb1375f61155b014925f7222e9138c2f0344a5c783
IEDL.DBID RIE
IngestDate Wed Sep 27 05:40:29 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-841fd0072d4f5719a093444fb1375f61155b014925f7222e9138c2f0344a5c783
PageCount 6
ParticipantIDs ieee_primary_10250520
PublicationCentury 2000
PublicationDate 2023-Aug.-23
PublicationDateYYYYMMDD 2023-08-23
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-Aug.-23
  day: 23
PublicationDecade 2020
PublicationTitle 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS)
PublicationTitleAbbrev ICAISS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8420899
Snippet This research work proposes a Human Machine Interaction (HMI) system that enables users to control PowerPoint presentations using hand gestures. By analyzing...
SourceID ieee
SourceType Publisher
StartPage 1786
SubjectTerms Cameras
Gesture recognition
Hand gestures
Human computer interaction
Human Machine Interaction
Keyboards
Machine learning
Machine learning algorithms
MediaPipe
OpenCV python
Personal digital devices
PyWin32
Title Gesture-Based Control of Presentation Slides using OpenCV
URI https://ieeexplore.ieee.org/document/10250520
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP3QIeJJxYm_ieC1s2nSpTlqcbrLGExlt5E2X6Qg7eg2_37zdZ3DgwfpJQ2BkITk5cf33gO4U3nff_TC6jcLZGFm_Dpo8sCG2oORFKFB15hNqNEomU71uCWrN1wYRGyCz7BHyeYt31b5iq7K_AwnwI78CX1XKbUma-3DbaubeT9MH4aTiUfURPXIFby3Kf_LOaUBjsHhP6s8gu6WgsfGP-ByDDtYnoB-9mv4qsbg0WOPZek6zJxVjo23LKKSTT4LiwtGIe0fjCJG0vcuvA2eXtOXoPU-CArO9TJIJHeWZL2tdLHi2oRaSCldxoWKXd_v4-KMTjdR7JSHeNRcJHnkSMDPxLlKxCl0yqrEM2AiE8bZqB8lpF-mMdP-nwiyRmqeoTyHLrV7Nl_LW8w2Tb74I_8SDqh36WI1ElfQWdYrvIa9_GtZLOqbZlC-AXWDi6I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL2IirpSseLbCG6nNo9pJksdrC3WUmiV7kpmciMFmUoffr-509biwoXMJhMIIQnJyeOecwBudV4PH72whs0CWZjZsA7aPHI1E8BIyZpFX5pN6E4nGQxMd0lWL7kwiFgGn2GVkuVbvhvnc7oqCzOcAFuEE_pWrJTgC7rWDtwslTPvWul9q9cLmJroKvmCV1clfnmnlNDR2P9npQdQWZPwWPcHXg5hA4sjME9hFZ9PMHoI6ONYugg0Z2PPumseUcF6HyOHU0ZB7e-MYkbStwq8Nh77aTNauh9EI87NLEoU946EvZ3ysebG1oxUSvmMSx37etjJxRmdb0TsdQB5NFwmufAk4WfjXCfyGDaLcYEnwGQmrXeiLhJSMDOYmfBPFFmrDM9QnUKF2j38XAhcDFdNPvsj_xp2m_2X9rDd6jyfwx71NF2zCnkBm7PJHC9hO_-ajaaTq3KAvgHuCY7p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+Second+International+Conference+on+Augmented+Intelligence+and+Sustainable+Systems+%28ICAISS%29&rft.atitle=Gesture-Based+Control+of+Presentation+Slides+using+OpenCV&rft.au=Vidya%2C+M.&rft.au=Vineela%2C+S.&rft.au=Sathish%2C+P.&rft.au=Reddy%2C+A.+Supraja&rft.date=2023-08-23&rft.pub=IEEE&rft.spage=1786&rft.epage=1791&rft_id=info:doi/10.1109%2FICAISS58487.2023.10250520&rft.externalDocID=10250520