Research on Indoor Positioning Algorithm based on Hybrid Sparrow Algorithm Improved Back Propagation Neural Network
Indoor positioning using Bluetooth's received signal strength indicator has gained significant attention and widespread usage due to its affordable cost, low power usage, and easy deployment. Nonetheless, conventional indoor positioning algorithms commonly experience issues, including building...
Uloženo v:
| Vydáno v: | 2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC) s. 151 - 155 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
17.11.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Indoor positioning using Bluetooth's received signal strength indicator has gained significant attention and widespread usage due to its affordable cost, low power usage, and easy deployment. Nonetheless, conventional indoor positioning algorithms commonly experience issues, including building occlusion and multipath effects in functional contexts, leading to inadequate indoor positioning results. To enhance positioning accuracy, this paper presents an Hybrid Sparrow Algorithm(HSSA), which optimises the indoor positioning algorithm of Back Propagation(BP) neural network. The algorithm generates the initial population of sparrows via Circle chaotic mapping and incorporates the Levy flight strategy, expanding the search space exploration range to improve global optimisation. The optimised algorithm is employed to establish the HSSA-BP localization model, enabling position prediction The results of the simulation illustrate that the HSSA-BP algorithm generates an average absolute error of merely 0.02m, which is notably better than the BP algorithm's 0.12m and the SSA-BP algorithm's 0.10m. The positioning accuracy has therefore been improved considerably. |
|---|---|
| AbstractList | Indoor positioning using Bluetooth's received signal strength indicator has gained significant attention and widespread usage due to its affordable cost, low power usage, and easy deployment. Nonetheless, conventional indoor positioning algorithms commonly experience issues, including building occlusion and multipath effects in functional contexts, leading to inadequate indoor positioning results. To enhance positioning accuracy, this paper presents an Hybrid Sparrow Algorithm(HSSA), which optimises the indoor positioning algorithm of Back Propagation(BP) neural network. The algorithm generates the initial population of sparrows via Circle chaotic mapping and incorporates the Levy flight strategy, expanding the search space exploration range to improve global optimisation. The optimised algorithm is employed to establish the HSSA-BP localization model, enabling position prediction The results of the simulation illustrate that the HSSA-BP algorithm generates an average absolute error of merely 0.02m, which is notably better than the BP algorithm's 0.12m and the SSA-BP algorithm's 0.10m. The positioning accuracy has therefore been improved considerably. |
| Author | Yan, Xiaofeng |
| Author_xml | – sequence: 1 givenname: Xiaofeng surname: Yan fullname: Yan, Xiaofeng email: 1278140067@qq.com organization: Shanghai University of Electric Power,School of Electronics and Information Engineering,Shanghai,China |
| BookMark | eNpNkLtOwzAYRo0EA5S-AYN5gATbf24eS0RppAoqKHPlW1KriR05gapvTypAYjrDd3SG7wZdOu8MQveUxJQS_lCVy21VppwDiRlhEFOSpBnL4QLNec4LSAkQTiC5RsObGYwIao-9w5XT3ge88YMdrXfWNXjRNj7Ycd9hKQajz9bqJIPV-L0XIfjjP6Pq-uC_JulRqAPeBN-LRpxD-MV8BtFOGI8-HG7RVS3awcx_OUMfy6dtuYrWr89VuVhHllI-RgXkwGrF8owRTdNEC56ogkrFFTBpOBhN68xoSJnUSV1kNWOSMlnIaSGKwQzd_XStMWbXB9uJcNr9fQHfFdhb2A |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICFTIC59930.2023.10456273 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350309034 |
| EndPage | 155 |
| ExternalDocumentID | 10456273 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-83732fc27620d154da94c81bc9c32be93ed1f6ed352bd4f86f22b12b8b3ed0c23 |
| IEDL.DBID | RIE |
| IngestDate | Wed May 01 11:58:49 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-83732fc27620d154da94c81bc9c32be93ed1f6ed352bd4f86f22b12b8b3ed0c23 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10456273 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Nov.-17 |
| PublicationDateYYYYMMDD | 2023-11-17 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC) |
| PublicationTitleAbbrev | ICFTIC |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8511419 |
| Snippet | Indoor positioning using Bluetooth's received signal strength indicator has gained significant attention and widespread usage due to its affordable cost, low... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 151 |
| SubjectTerms | Buletooth HSSA-BP indoor positioning Neural networks Prediction algorithms Predictive models RSSI Sociology Space exploration Training Wireless communication |
| Title | Research on Indoor Positioning Algorithm based on Hybrid Sparrow Algorithm Improved Back Propagation Neural Network |
| URI | https://ieeexplore.ieee.org/document/10456273 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60iHhSseKbCF63dpPsZnPUYmlBSsEqvZW8Vot1t_Qh-O-dpFsfBw-eNmw-NpBhM1-S-WYArqgRSBNsGnGhZMRZxiPkcdjKVK6QHlATrgue7kWvlw2Hsl-J1YMWxjkXgs9cwzfDXb4tzdIfleEf7vm6YJuwKUS6Emttw2WVN_O622oPuq0EPW6z4auCN9b4X5VTguNo7_5zyD2of0vwSP_LuezDhisOYL6OkyNlQbqFLcsZ6VdRV4giN5PnEjf7L2_EOyfrUZ0PL8kiD9OQbPEHYnWagKBbZV79ULiyBCsRn69DTfARAsTr8Ni-G7Q6UVU1IRrHsVxEuONkNDcUV7mmRYJkleQGyamRhlHtJHM2zlNnkXlpy_MszSnVMdWZxp6moewQakVZuCMgKs5FkuCnLDVoPKZ5opRmnFOntZT8GOp-xkbTVWKM0XqyTv54fwo73i5eyheLM6gtZkt3DlvmfTGezy6COT8BPmWjug |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIOAEiCHeBIlrR5uka3uEiWkVY5rEQLtNeRUmRjvtgcS_x8k6HgcOnBq1TiLZavwl8WcDXFIVIUzQdY9HIvE4i7mHOA5bscgEwgOq3HXBUzvqdOJ-P-mWZHXHhTHGuOAzU7NNd5evCzW3R2X4h1u8HrFVWAs5p_6CrrUBF2XmzKu00eyljRB9rl-zdcFryx6_aqc419Hc_uekO1D9JuGR7pd72YUVk-_BdBkpR4qcpLkuignplnFXKEWuR88Fbvdf3oh1T9pKtT4sKYs8jF26xR8Si_MEFLoR6tVOhWuLsxOxGTvECB8uRLwKj83bXqPllXUTvGEQJDMP95yMZoriOudrhEhaJFwhPFWJYlSahBkdZHWjEXtJzbO4nlEqAypjiV98Rdk-VPIiNwdARJBFYYhDaarQfEzyUAjJUPlGyiThh1C1GhuMF6kxBktlHf3x_hw2W7379qCddu6OYcvayBL7gugEKrPJ3JzCunqfDaeTM2faT-ySpwE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Frontiers+Technology+of+Information+and+Computer+%28ICFTIC%29&rft.atitle=Research+on+Indoor+Positioning+Algorithm+based+on+Hybrid+Sparrow+Algorithm+Improved+Back+Propagation+Neural+Network&rft.au=Yan%2C+Xiaofeng&rft.date=2023-11-17&rft.pub=IEEE&rft.spage=151&rft.epage=155&rft_id=info:doi/10.1109%2FICFTIC59930.2023.10456273&rft.externalDocID=10456273 |