Research on Indoor Positioning Algorithm based on Hybrid Sparrow Algorithm Improved Back Propagation Neural Network

Indoor positioning using Bluetooth's received signal strength indicator has gained significant attention and widespread usage due to its affordable cost, low power usage, and easy deployment. Nonetheless, conventional indoor positioning algorithms commonly experience issues, including building...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC) s. 151 - 155
Hlavní autor: Yan, Xiaofeng
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 17.11.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Indoor positioning using Bluetooth's received signal strength indicator has gained significant attention and widespread usage due to its affordable cost, low power usage, and easy deployment. Nonetheless, conventional indoor positioning algorithms commonly experience issues, including building occlusion and multipath effects in functional contexts, leading to inadequate indoor positioning results. To enhance positioning accuracy, this paper presents an Hybrid Sparrow Algorithm(HSSA), which optimises the indoor positioning algorithm of Back Propagation(BP) neural network. The algorithm generates the initial population of sparrows via Circle chaotic mapping and incorporates the Levy flight strategy, expanding the search space exploration range to improve global optimisation. The optimised algorithm is employed to establish the HSSA-BP localization model, enabling position prediction The results of the simulation illustrate that the HSSA-BP algorithm generates an average absolute error of merely 0.02m, which is notably better than the BP algorithm's 0.12m and the SSA-BP algorithm's 0.10m. The positioning accuracy has therefore been improved considerably.
AbstractList Indoor positioning using Bluetooth's received signal strength indicator has gained significant attention and widespread usage due to its affordable cost, low power usage, and easy deployment. Nonetheless, conventional indoor positioning algorithms commonly experience issues, including building occlusion and multipath effects in functional contexts, leading to inadequate indoor positioning results. To enhance positioning accuracy, this paper presents an Hybrid Sparrow Algorithm(HSSA), which optimises the indoor positioning algorithm of Back Propagation(BP) neural network. The algorithm generates the initial population of sparrows via Circle chaotic mapping and incorporates the Levy flight strategy, expanding the search space exploration range to improve global optimisation. The optimised algorithm is employed to establish the HSSA-BP localization model, enabling position prediction The results of the simulation illustrate that the HSSA-BP algorithm generates an average absolute error of merely 0.02m, which is notably better than the BP algorithm's 0.12m and the SSA-BP algorithm's 0.10m. The positioning accuracy has therefore been improved considerably.
Author Yan, Xiaofeng
Author_xml – sequence: 1
  givenname: Xiaofeng
  surname: Yan
  fullname: Yan, Xiaofeng
  email: 1278140067@qq.com
  organization: Shanghai University of Electric Power,School of Electronics and Information Engineering,Shanghai,China
BookMark eNpNkLtOwzAYRo0EA5S-AYN5gATbf24eS0RppAoqKHPlW1KriR05gapvTypAYjrDd3SG7wZdOu8MQveUxJQS_lCVy21VppwDiRlhEFOSpBnL4QLNec4LSAkQTiC5RsObGYwIao-9w5XT3ge88YMdrXfWNXjRNj7Ycd9hKQajz9bqJIPV-L0XIfjjP6Pq-uC_JulRqAPeBN-LRpxD-MV8BtFOGI8-HG7RVS3awcx_OUMfy6dtuYrWr89VuVhHllI-RgXkwGrF8owRTdNEC56ogkrFFTBpOBhN68xoSJnUSV1kNWOSMlnIaSGKwQzd_XStMWbXB9uJcNr9fQHfFdhb2A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICFTIC59930.2023.10456273
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350309034
EndPage 155
ExternalDocumentID 10456273
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-83732fc27620d154da94c81bc9c32be93ed1f6ed352bd4f86f22b12b8b3ed0c23
IEDL.DBID RIE
IngestDate Wed May 01 11:58:49 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-83732fc27620d154da94c81bc9c32be93ed1f6ed352bd4f86f22b12b8b3ed0c23
PageCount 5
ParticipantIDs ieee_primary_10456273
PublicationCentury 2000
PublicationDate 2023-Nov.-17
PublicationDateYYYYMMDD 2023-11-17
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-17
  day: 17
PublicationDecade 2020
PublicationTitle 2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC)
PublicationTitleAbbrev ICFTIC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8511419
Snippet Indoor positioning using Bluetooth's received signal strength indicator has gained significant attention and widespread usage due to its affordable cost, low...
SourceID ieee
SourceType Publisher
StartPage 151
SubjectTerms Buletooth
HSSA-BP
indoor positioning
Neural networks
Prediction algorithms
Predictive models
RSSI
Sociology
Space exploration
Training
Wireless communication
Title Research on Indoor Positioning Algorithm based on Hybrid Sparrow Algorithm Improved Back Propagation Neural Network
URI https://ieeexplore.ieee.org/document/10456273
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60iHhSseKbCF63dpPsZnPUYmlBSsEqvZW8Vot1t_Qh-O-dpFsfBw-eNmw-NpBhM1-S-WYArqgRSBNsGnGhZMRZxiPkcdjKVK6QHlATrgue7kWvlw2Hsl-J1YMWxjkXgs9cwzfDXb4tzdIfleEf7vm6YJuwKUS6Emttw2WVN_O622oPuq0EPW6z4auCN9b4X5VTguNo7_5zyD2of0vwSP_LuezDhisOYL6OkyNlQbqFLcsZ6VdRV4giN5PnEjf7L2_EOyfrUZ0PL8kiD9OQbPEHYnWagKBbZV79ULiyBCsRn69DTfARAsTr8Ni-G7Q6UVU1IRrHsVxEuONkNDcUV7mmRYJkleQGyamRhlHtJHM2zlNnkXlpy_MszSnVMdWZxp6moewQakVZuCMgKs5FkuCnLDVoPKZ5opRmnFOntZT8GOp-xkbTVWKM0XqyTv54fwo73i5eyheLM6gtZkt3DlvmfTGezy6COT8BPmWjug
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIOAEiCHeBIlrR5uka3uEiWkVY5rEQLtNeRUmRjvtgcS_x8k6HgcOnBq1TiLZavwl8WcDXFIVIUzQdY9HIvE4i7mHOA5bscgEwgOq3HXBUzvqdOJ-P-mWZHXHhTHGuOAzU7NNd5evCzW3R2X4h1u8HrFVWAs5p_6CrrUBF2XmzKu00eyljRB9rl-zdcFryx6_aqc419Hc_uekO1D9JuGR7pd72YUVk-_BdBkpR4qcpLkuignplnFXKEWuR88Fbvdf3oh1T9pKtT4sKYs8jF26xR8Si_MEFLoR6tVOhWuLsxOxGTvECB8uRLwKj83bXqPllXUTvGEQJDMP95yMZoriOudrhEhaJFwhPFWJYlSahBkdZHWjEXtJzbO4nlEqAypjiV98Rdk-VPIiNwdARJBFYYhDaarQfEzyUAjJUPlGyiThh1C1GhuMF6kxBktlHf3x_hw2W7379qCddu6OYcvayBL7gugEKrPJ3JzCunqfDaeTM2faT-ySpwE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Frontiers+Technology+of+Information+and+Computer+%28ICFTIC%29&rft.atitle=Research+on+Indoor+Positioning+Algorithm+based+on+Hybrid+Sparrow+Algorithm+Improved+Back+Propagation+Neural+Network&rft.au=Yan%2C+Xiaofeng&rft.date=2023-11-17&rft.pub=IEEE&rft.spage=151&rft.epage=155&rft_id=info:doi/10.1109%2FICFTIC59930.2023.10456273&rft.externalDocID=10456273