Intelligent Flight Control for Cruise Vehicle Based on Backstepping Design and Reinforcement Learning

Aiming at velocity/height tracking control and attitude stabilization for the longitudinal flight of cruise vehicle, the research of intelligent flight control method is carried out by combining the backstepping control theory and the deep reinforcement learning method. Firstly, the longitudinal fli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Automation Congress (Online) S. 1247 - 1251
Hauptverfasser: Liu, Xiaodong, Jia, Chenhui, Yang, Qingjun, Wu, Tiancai, Zhang, Yu
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 17.11.2023
Schlagworte:
ISSN:2688-0938
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Aiming at velocity/height tracking control and attitude stabilization for the longitudinal flight of cruise vehicle, the research of intelligent flight control method is carried out by combining the backstepping control theory and the deep reinforcement learning method. Firstly, the longitudinal flight control system of the vehicle is decomposed into velocity and height subsystems, and the control law is designed based on backstepping control theory. Then, aiming at the problems that the selection of the multiple control gains will directly affect the control performance of the closed-loop system and the adjustment process of control gains is cumbersome, the twin delayed deep deterministic policy gradient algorithm (TD3) will be adopted to train the cruise vehicle, so that it can determine the control gains online according to the current flight states. The numerical simulation results show that, the proposed intelligent flight control method can guarantee the high-precision tracking with respect to height and velocity commands, and also realize the attitude stability of cruise vehicle.
AbstractList Aiming at velocity/height tracking control and attitude stabilization for the longitudinal flight of cruise vehicle, the research of intelligent flight control method is carried out by combining the backstepping control theory and the deep reinforcement learning method. Firstly, the longitudinal flight control system of the vehicle is decomposed into velocity and height subsystems, and the control law is designed based on backstepping control theory. Then, aiming at the problems that the selection of the multiple control gains will directly affect the control performance of the closed-loop system and the adjustment process of control gains is cumbersome, the twin delayed deep deterministic policy gradient algorithm (TD3) will be adopted to train the cruise vehicle, so that it can determine the control gains online according to the current flight states. The numerical simulation results show that, the proposed intelligent flight control method can guarantee the high-precision tracking with respect to height and velocity commands, and also realize the attitude stability of cruise vehicle.
Author Jia, Chenhui
Liu, Xiaodong
Wu, Tiancai
Yang, Qingjun
Zhang, Yu
Author_xml – sequence: 1
  givenname: Xiaodong
  surname: Liu
  fullname: Liu, Xiaodong
  email: k.start@163.com
  organization: Beijing Aerospace Automatic Control Institute,National Key Laboratory of Science and Technology on Aerospace Intelligence Control,Beijing,China
– sequence: 2
  givenname: Chenhui
  surname: Jia
  fullname: Jia, Chenhui
  organization: Beijing Aerospace Automatic Control Institute,National Key Laboratory of Science and Technology on Aerospace Intelligence Control,Beijing,China
– sequence: 3
  givenname: Qingjun
  surname: Yang
  fullname: Yang, Qingjun
  organization: Beijing Aerospace Automatic Control Institute,Beijing,China
– sequence: 4
  givenname: Tiancai
  surname: Wu
  fullname: Wu, Tiancai
  organization: School of Automation Science and Electrical Engineering, Beihang University,Beijing,China
– sequence: 5
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Beijing Aerospace Automatic Control Institute,National Key Laboratory of Science and Technology on Aerospace Intelligence Control,Beijing,China
BookMark eNo1kEFLAzEUhKMoWGv_gUj-wNaXvKRJjnW1WigIol5L3H1po9ts2awH_323qKdvDjPDMJfsLLWJGLsRMBUC3G05L7XTWk8lSJwKUBqsMSds4oyzqAEBjXanbCRn1hbg0F6wSc6fAINfKK1gxGiZemqauKHU88XAbc_LNvVd2_DQdrzsvmMm_k7bWDXE73ymmrdpENVX7mm_j2nD7ynHTeI-1fyFYhpyFe2OhSvyXRocV-w8-CbT5I9j9rZ4eC2fitXz47Kcr4oohOsLE1ArIq3DR0W1sLPg_HG2lArJa2dkRUFAZRShsuixloqchSBrpICEY3b92xuJaL3v4s53P-v_Z_AAnipanw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CAC59555.2023.10450877
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350303759
EISSN 2688-0938
EndPage 1251
ExternalDocumentID 10450877
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-7f354ee55fbced186f9a09382243ea5972cef10c74e3483a3d24e980f2d3ef3e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:17:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-7f354ee55fbced186f9a09382243ea5972cef10c74e3483a3d24e980f2d3ef3e3
PageCount 5
ParticipantIDs ieee_primary_10450877
PublicationCentury 2000
PublicationDate 2023-Nov.-17
PublicationDateYYYYMMDD 2023-11-17
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-17
  day: 17
PublicationDecade 2020
PublicationTitle Chinese Automation Congress (Online)
PublicationTitleAbbrev CAC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002314540
Score 1.851186
Snippet Aiming at velocity/height tracking control and attitude stabilization for the longitudinal flight of cruise vehicle, the research of intelligent flight control...
SourceID ieee
SourceType Publisher
StartPage 1247
SubjectTerms adaptive control
Attitude control
Backstepping
backstepping control
cruise vehicle
Deep reinforcement learning
Numerical simulation
Process control
Simulation
Training
twin delayed deep deterministic policy gradient algorithm (TD3)
Title Intelligent Flight Control for Cruise Vehicle Based on Backstepping Design and Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10450877
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhECW28eBJjTV-h4NX6rJAWY662mhimsZo01vDwlAbzbbZbv39At3WePDgjZAQAg8ywzDvDULXSc8ZbxoESS1LiT8hlqiCGSIN5RS0BhGVmEbPcjDIxmM1bMjqkQsDADH5DLqhGf_y7dysQqjM33AugoBdC7WklGuy1jag4h2VoCbXsIBpom7y21woIUQ3lAjvbgb_KqMSrUh__5_zH6DODx8PD7eW5hDtQHmE4Gmrplnj_md4ZON8nXiOvSeK82o1WwIewXs4GvjOmyuL56VvmA8PbdBlmOL7mMCBdWnxC0QRVRPjhbjRXZ120Fv_4TV_JE3RBDKjVNVEOiY4gBCuMGBp1nNKJ4qFZFEG2j8fUgOOJkZyYDxjmtmUg8oS58ECx4Ado3Y5L-EEYe8L6czj5VcHPLW60CrVHCQtQPOCs1PUCXs0Wax1MSab7Tn7o_8c7QUkApOPygvUrqsVXKJd81XPltVVRPMbXNOiEw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0UTfSkRozf9uC1uP1it0ddJRCREIOEG-m2s0o0i4HF329bFowHD96aJk3avjYznc57g9B11MyNMw2SMMsZcSfEEpVxQ2JDBQWtQQYlpmE37vWS0Uj1K7J64MIAQEg-g4Zvhr98OzULHypzN1xIL2C3ibakEIwu6VrrkIpzVbyeXMUDppG6SW9TqaSUDV8kvLEa_quQSrAjrb1_zmAf1X8Yebi_tjUHaAOKQwSdtZ5miVsf_pmN02XqOXa-KE5ni8kc8BDe_OHAd85gWTwtXMO8O3C9MsMrvg8pHFgXFj9DkFE1IWKIK-XV1zp6aT0M0japyiaQCaWqJHHOpQCQMs8MWJo0c6UjxX26KAftHhDMQE4jEwvgIuGaWyZAJVHu4IKcAz9CtWJawDHCzhvSiUPMrQ4EszrTimkBMc1Ai0zwE1T3ezT-XCpjjFfbc_pH_xXaaQ-euuNup_d4hnY9Kp7XR-NzVCtnC7hA2-arnMxnlwHZb_gBpVo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Automation+Congress+%28Online%29&rft.atitle=Intelligent+Flight+Control+for+Cruise+Vehicle+Based+on+Backstepping+Design+and+Reinforcement+Learning&rft.au=Liu%2C+Xiaodong&rft.au=Jia%2C+Chenhui&rft.au=Yang%2C+Qingjun&rft.au=Wu%2C+Tiancai&rft.date=2023-11-17&rft.pub=IEEE&rft.eissn=2688-0938&rft.spage=1247&rft.epage=1251&rft_id=info:doi/10.1109%2FCAC59555.2023.10450877&rft.externalDocID=10450877