An Asynchronous Parallel Algorithm Framework for Decentralized Pose Graph Optimization
This paper proposes an asynchronous parallel algorithm framework for decentralized pose graph optimization (PGO) in collaborative simultaneous localization and mapping. Our framework combines and generalizes the superiority of the existing works on PGO. Specifically, we decompose the objective funct...
Uloženo v:
| Vydáno v: | 2023 3rd International Conference on Computer, Control and Robotics (ICCCR) s. 158 - 163 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
24.03.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes an asynchronous parallel algorithm framework for decentralized pose graph optimization (PGO) in collaborative simultaneous localization and mapping. Our framework combines and generalizes the superiority of the existing works on PGO. Specifically, we decompose the objective function of decentralized PGO into the sum of multiple sub-problems to be solved in a fully distributed fashion, and reformulate the sub-problems with the rank-restricted relaxation strategy to reduce the size of the search space and provide a computational certifiable. Moreover, the proposed framework is Gauss-Seidel like without compromising convergence and accelerates the optimization inference with an asynchronous parallel scheme. Finally, we experimentally evaluate the performance of our framework embedded with different optimizers on bench-mark PGO datasets under bounded communication delays. The experiment results demonstrate that, compared to the existing methods, our framework has a faster converge without additional parameter turning and a strong resilience for communication delays. |
|---|---|
| AbstractList | This paper proposes an asynchronous parallel algorithm framework for decentralized pose graph optimization (PGO) in collaborative simultaneous localization and mapping. Our framework combines and generalizes the superiority of the existing works on PGO. Specifically, we decompose the objective function of decentralized PGO into the sum of multiple sub-problems to be solved in a fully distributed fashion, and reformulate the sub-problems with the rank-restricted relaxation strategy to reduce the size of the search space and provide a computational certifiable. Moreover, the proposed framework is Gauss-Seidel like without compromising convergence and accelerates the optimization inference with an asynchronous parallel scheme. Finally, we experimentally evaluate the performance of our framework embedded with different optimizers on bench-mark PGO datasets under bounded communication delays. The experiment results demonstrate that, compared to the existing methods, our framework has a faster converge without additional parameter turning and a strong resilience for communication delays. |
| Author | Yi, Peng Guo, Guanghui |
| Author_xml | – sequence: 1 givenname: Guanghui surname: Guo fullname: Guo, Guanghui email: 2030748@tongji.edu.cn organization: Tongji University,Department of Control Science and Engineering,Shanghai,China – sequence: 2 givenname: Peng surname: Yi fullname: Yi, Peng email: yipeng@tongji.edu.cn organization: Tongji University,Department of Control Science and Engineering,Shanghai,China |
| BookMark | eNo1j9FKwzAYRiPohZu-gRd5gdb8SdM0l6W6ORhsiHo70vaPDbZJSSuyPb0O9eq7ORzOtyCXPngkhAJLAZi-31RV9SxzlamUMy5SYKCFZuyCLCDPZaY5cHZN3kpPy-nomy4GHz4nujfR9D32tOzfQ3RzN9BVNAN-hfhBbYj0ARv08w_kTtjSfZiQrqMZO7obZze4k5ld8Dfkypp-wtu_XZLX1eNL9ZRsd-tNVW4TB6DnRMlC1Fya1opcgipUyziD1tZK1aDPnbaxIlPa5k2WG8UK3nBti8xIjarlYknufr0OEQ9jdIOJx8P_V_ENsftPZg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCCR56747.2023.10193900 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665492120 9781665492126 |
| EndPage | 163 |
| ExternalDocumentID | 10193900 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62003239 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-7583b25adf3651787d0201dfb77b191665fcf3479f6c46a7082c29f84a59e7d23 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:14:42 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-7583b25adf3651787d0201dfb77b191665fcf3479f6c46a7082c29f84a59e7d23 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10193900 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-March-24 |
| PublicationDateYYYYMMDD | 2023-03-24 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-March-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 3rd International Conference on Computer, Control and Robotics (ICCCR) |
| PublicationTitleAbbrev | ICCCR |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8264407 |
| Snippet | This paper proposes an asynchronous parallel algorithm framework for decentralized pose graph optimization (PGO) in collaborative simultaneous localization and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 158 |
| SubjectTerms | Delays Distributed Optimization Manifolds Optimization methods Pose Graph Optimization Riemannian Mani-fold Search problems Simultaneous localization and mapping Transforms Turning |
| Title | An Asynchronous Parallel Algorithm Framework for Decentralized Pose Graph Optimization |
| URI | https://ieeexplore.ieee.org/document/10193900 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46PHhSceJvcvCaubb50RxLdSrILKJjt5Hmhw62VtZN0L_el65VPHjwUAilUHghed-XfN97CF2w0PksQIl0QhGqw4DEhlICXEhZYFyG1kfZo3sxHMbjscwas3rthbHW1uIz2_PD-i7flHrlj8pghQPckH1g6JtC8LVZq1Xn9OXlXZqmj4wDQO75puC99vNfjVPqvDHY-ecfd1H3x4GHs-_csoc2bLGPRkmBk-qj0L6gLTB2nKmFb4Uyw8nspQSW_zrHg1ZshQGN4ivbiC-nn9bgrKwsvvEVqvED7BTzxoLZRc-D66f0ljR9Ecg0COSSAMSP8pAp4yLOAlhxBjBfYFwuRA70i3PmtPMOUcc15UpAltehdDFVTFphwugAdYqysIcIC3-RFsGT9w11hkmdO6phy1My55a7I9T1QZm8rUtfTNp4HP_x_gRt-9B7kVZIT1FnuVjZM7Sl35fTanFeT9gXGxeYbQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1SBV2pWPFtFm5T55FHsyyjtcVaB6mluzKThxbaGelD0K_3ZjqjuHDhYiAMhEBCcs9JzrkXoSsWWBcFKJFWJISqwCdNTSkBLpQYYFyaFlfZw57o95ujkYxLs3rhhTHGFOIz03DN4i1f52rlrspghwPckB4w9E1GaeCt7VqVPseT190oip4YB4jccGXBG1WHX6VTisjR3v3nmHuo_uPBw_F3dNlHGyY7QMNWhluLj0y5lLbA2XGczF0xlCluTV9y4PmvM9yu5FYY8Ci-MaX8cvJpNI7zhcF3Lkc1foSzYlaaMOvouX07iDqkrIxAJr4vlwRAfpgGLNE25MyHPacB9fnapkKkQMA4Z1ZZ5xG1XFGeCIjzKpC2SRMmjdBBeIhqWZ6ZI4SFe0oL4Us9Ta1mUqWWKjj0Eplyw-0xqrtJGb-tk1-Mq_k4-eP_JdruDB564163f3-KdtwyOMlWQM9QbTlfmXO0pd6Xk8X8oli8LzcAm7Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+3rd+International+Conference+on+Computer%2C+Control+and+Robotics+%28ICCCR%29&rft.atitle=An+Asynchronous+Parallel+Algorithm+Framework+for+Decentralized+Pose+Graph+Optimization&rft.au=Guo%2C+Guanghui&rft.au=Yi%2C+Peng&rft.date=2023-03-24&rft.pub=IEEE&rft.spage=158&rft.epage=163&rft_id=info:doi/10.1109%2FICCCR56747.2023.10193900&rft.externalDocID=10193900 |