An Asynchronous Parallel Algorithm Framework for Decentralized Pose Graph Optimization

This paper proposes an asynchronous parallel algorithm framework for decentralized pose graph optimization (PGO) in collaborative simultaneous localization and mapping. Our framework combines and generalizes the superiority of the existing works on PGO. Specifically, we decompose the objective funct...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 3rd International Conference on Computer, Control and Robotics (ICCCR) s. 158 - 163
Hlavní autoři: Guo, Guanghui, Yi, Peng
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 24.03.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes an asynchronous parallel algorithm framework for decentralized pose graph optimization (PGO) in collaborative simultaneous localization and mapping. Our framework combines and generalizes the superiority of the existing works on PGO. Specifically, we decompose the objective function of decentralized PGO into the sum of multiple sub-problems to be solved in a fully distributed fashion, and reformulate the sub-problems with the rank-restricted relaxation strategy to reduce the size of the search space and provide a computational certifiable. Moreover, the proposed framework is Gauss-Seidel like without compromising convergence and accelerates the optimization inference with an asynchronous parallel scheme. Finally, we experimentally evaluate the performance of our framework embedded with different optimizers on bench-mark PGO datasets under bounded communication delays. The experiment results demonstrate that, compared to the existing methods, our framework has a faster converge without additional parameter turning and a strong resilience for communication delays.
AbstractList This paper proposes an asynchronous parallel algorithm framework for decentralized pose graph optimization (PGO) in collaborative simultaneous localization and mapping. Our framework combines and generalizes the superiority of the existing works on PGO. Specifically, we decompose the objective function of decentralized PGO into the sum of multiple sub-problems to be solved in a fully distributed fashion, and reformulate the sub-problems with the rank-restricted relaxation strategy to reduce the size of the search space and provide a computational certifiable. Moreover, the proposed framework is Gauss-Seidel like without compromising convergence and accelerates the optimization inference with an asynchronous parallel scheme. Finally, we experimentally evaluate the performance of our framework embedded with different optimizers on bench-mark PGO datasets under bounded communication delays. The experiment results demonstrate that, compared to the existing methods, our framework has a faster converge without additional parameter turning and a strong resilience for communication delays.
Author Yi, Peng
Guo, Guanghui
Author_xml – sequence: 1
  givenname: Guanghui
  surname: Guo
  fullname: Guo, Guanghui
  email: 2030748@tongji.edu.cn
  organization: Tongji University,Department of Control Science and Engineering,Shanghai,China
– sequence: 2
  givenname: Peng
  surname: Yi
  fullname: Yi, Peng
  email: yipeng@tongji.edu.cn
  organization: Tongji University,Department of Control Science and Engineering,Shanghai,China
BookMark eNo1j9FKwzAYRiPohZu-gRd5gdb8SdM0l6W6ORhsiHo70vaPDbZJSSuyPb0O9eq7ORzOtyCXPngkhAJLAZi-31RV9SxzlamUMy5SYKCFZuyCLCDPZaY5cHZN3kpPy-nomy4GHz4nujfR9D32tOzfQ3RzN9BVNAN-hfhBbYj0ARv08w_kTtjSfZiQrqMZO7obZze4k5ld8Dfkypp-wtu_XZLX1eNL9ZRsd-tNVW4TB6DnRMlC1Fya1opcgipUyziD1tZK1aDPnbaxIlPa5k2WG8UK3nBti8xIjarlYknufr0OEQ9jdIOJx8P_V_ENsftPZg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCCR56747.2023.10193900
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665492120
9781665492126
EndPage 163
ExternalDocumentID 10193900
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62003239
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-7583b25adf3651787d0201dfb77b191665fcf3479f6c46a7082c29f84a59e7d23
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:42 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-7583b25adf3651787d0201dfb77b191665fcf3479f6c46a7082c29f84a59e7d23
PageCount 6
ParticipantIDs ieee_primary_10193900
PublicationCentury 2000
PublicationDate 2023-March-24
PublicationDateYYYYMMDD 2023-03-24
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-March-24
  day: 24
PublicationDecade 2020
PublicationTitle 2023 3rd International Conference on Computer, Control and Robotics (ICCCR)
PublicationTitleAbbrev ICCCR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8264407
Snippet This paper proposes an asynchronous parallel algorithm framework for decentralized pose graph optimization (PGO) in collaborative simultaneous localization and...
SourceID ieee
SourceType Publisher
StartPage 158
SubjectTerms Delays
Distributed Optimization
Manifolds
Optimization methods
Pose Graph Optimization
Riemannian Mani-fold
Search problems
Simultaneous localization and mapping
Transforms
Turning
Title An Asynchronous Parallel Algorithm Framework for Decentralized Pose Graph Optimization
URI https://ieeexplore.ieee.org/document/10193900
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46PHhSceJvcvCaubb50RxLdSrILKJjt5Hmhw62VtZN0L_el65VPHjwUAilUHghed-XfN97CF2w0PksQIl0QhGqw4DEhlICXEhZYFyG1kfZo3sxHMbjscwas3rthbHW1uIz2_PD-i7flHrlj8pghQPckH1g6JtC8LVZq1Xn9OXlXZqmj4wDQO75puC99vNfjVPqvDHY-ecfd1H3x4GHs-_csoc2bLGPRkmBk-qj0L6gLTB2nKmFb4Uyw8nspQSW_zrHg1ZshQGN4ivbiC-nn9bgrKwsvvEVqvED7BTzxoLZRc-D66f0ljR9Ecg0COSSAMSP8pAp4yLOAlhxBjBfYFwuRA70i3PmtPMOUcc15UpAltehdDFVTFphwugAdYqysIcIC3-RFsGT9w11hkmdO6phy1My55a7I9T1QZm8rUtfTNp4HP_x_gRt-9B7kVZIT1FnuVjZM7Sl35fTanFeT9gXGxeYbQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1SBV2pWPFtFm5T55FHsyyjtcVaB6mluzKThxbaGelD0K_3ZjqjuHDhYiAMhEBCcs9JzrkXoSsWWBcFKJFWJISqwCdNTSkBLpQYYFyaFlfZw57o95ujkYxLs3rhhTHGFOIz03DN4i1f52rlrspghwPckB4w9E1GaeCt7VqVPseT190oip4YB4jccGXBG1WHX6VTisjR3v3nmHuo_uPBw_F3dNlHGyY7QMNWhluLj0y5lLbA2XGczF0xlCluTV9y4PmvM9yu5FYY8Ci-MaX8cvJpNI7zhcF3Lkc1foSzYlaaMOvouX07iDqkrIxAJr4vlwRAfpgGLNE25MyHPacB9fnapkKkQMA4Z1ZZ5xG1XFGeCIjzKpC2SRMmjdBBeIhqWZ6ZI4SFe0oL4Us9Ta1mUqWWKjj0Eplyw-0xqrtJGb-tk1-Mq_k4-eP_JdruDB564163f3-KdtwyOMlWQM9QbTlfmXO0pd6Xk8X8oli8LzcAm7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+3rd+International+Conference+on+Computer%2C+Control+and+Robotics+%28ICCCR%29&rft.atitle=An+Asynchronous+Parallel+Algorithm+Framework+for+Decentralized+Pose+Graph+Optimization&rft.au=Guo%2C+Guanghui&rft.au=Yi%2C+Peng&rft.date=2023-03-24&rft.pub=IEEE&rft.spage=158&rft.epage=163&rft_id=info:doi/10.1109%2FICCCR56747.2023.10193900&rft.externalDocID=10193900