EGNN-C+: Interpretable Evolving Granular Neural Network and Application in Classification of Weakly-Supervised EEG Data Streams

We introduce a modified incremental learning algorithm for evolving Granular Neural Network Classifiers (eGNN-C+). We use double-boundary hyper-boxes to represent granules, and customize the adaptation procedures to enhance the robustness of outer boxes for data coverage and noise suppression, while...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Conference on Evolving and Adaptive Intelligent Systems (Online) s. 1 - 10
Hlavní autoři: Leite, Daniel, Silva, Alisson, Casalino, Gabriella, Sharma, Arnab, Fortunato, Danielle, Ngomo, Axel-Cyrille
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 23.05.2024
Témata:
ISSN:2473-4691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce a modified incremental learning algorithm for evolving Granular Neural Network Classifiers (eGNN-C+). We use double-boundary hyper-boxes to represent granules, and customize the adaptation procedures to enhance the robustness of outer boxes for data coverage and noise suppression, while ensuring that inner boxes remain flexible to capture drifts. The classifier evolves from scratch, incorporates new classes on the fly, and performs local incremental feature weighting. As an application, we focus on the classification of emotion-related patterns within electroencephalogram (EEG) signals. Emotion recognition is crucial for enhancing the realism and interactivity of computer systems. The challenge lies exactly in developing high-performance algorithms capable of effectively managing individual differences and non-stationarities in physiological data without relying on subject-specific information. We extract features from the Fourier spectrum of EEG signals obtained from 28 individuals engaged in playing computer games - a public dataset. Each game elicits a different predominant emotion: boredom, calmness, horror, or joy. We analyze individual electrodes, time window lengths, and frequency bands to assess the accuracy and interpretability of resulting user-independent neural models. The findings indicate that both brain hemispheres assist classification, especially electrodes on the temporal (T8) and parietal (P7) areas, alongside contributions from frontal and occipital electrodes. While patterns may manifest in any band, the Alpha (8-13Hz), Delta (1-4Hz), and Theta (4-8Hz) bands, in this order, exhibited higher correspondence with the emotion classes. The eGNN-C+ demonstrates effectiveness in learning EEG data. It achieves an accuracy of 81.7% and a 0.002933 interpretability using 10-second time windows, even in face of a highly-stochastic time-varying 4-class classification problem.
ISSN:2473-4691
DOI:10.1109/EAIS58494.2024.10570033