Deep Learning Model for Railroad Structural Health Monitoring via Distributed Acoustic Sensing

Railway infrastructure plays a vital role in modern transportation systems, facilitating the efficient movement of people and goods. However, the integrity and performance of railroad structures are subject to various external forces and aging processes, which necessitate continuous monitoring to en...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 26th ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter) s. 274 - 281
Hlavní autoři: Rahman, Md Arifur, Taheri, Hossein, Kim, Jongyeop
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.07.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Railway infrastructure plays a vital role in modern transportation systems, facilitating the efficient movement of people and goods. However, the integrity and performance of railroad structures are subject to various external forces and aging processes, which necessitate continuous monitoring to ensure safety and operational efficiency. This research focused on the structural health monitoring of the railroad using Distributed Acoustic Sensing (DAS) data collected from a High Tonnage Loop (HTL). An investigation on applying a deep learning model, long-shot-term memory (LSTM), and gated recurrent Unit(GRU) is presented to identify and classify railroad conditions.
AbstractList Railway infrastructure plays a vital role in modern transportation systems, facilitating the efficient movement of people and goods. However, the integrity and performance of railroad structures are subject to various external forces and aging processes, which necessitate continuous monitoring to ensure safety and operational efficiency. This research focused on the structural health monitoring of the railroad using Distributed Acoustic Sensing (DAS) data collected from a High Tonnage Loop (HTL). An investigation on applying a deep learning model, long-shot-term memory (LSTM), and gated recurrent Unit(GRU) is presented to identify and classify railroad conditions.
Author Kim, Jongyeop
Rahman, Md Arifur
Taheri, Hossein
Author_xml – sequence: 1
  givenname: Md Arifur
  surname: Rahman
  fullname: Rahman, Md Arifur
  email: mr26497@georgiasouthern.edu
  organization: Georgia Southern University,Manufacturing Engineering Department,Statesboro,GA,USA,30460
– sequence: 2
  givenname: Hossein
  surname: Taheri
  fullname: Taheri, Hossein
  email: htaheri@georgiasouthern.edu
  organization: Georgia Southern University,Manufacturing Engineering Department,Statesboro,GA,USA,30460
– sequence: 3
  givenname: Jongyeop
  surname: Kim
  fullname: Kim, Jongyeop
  email: jongyeopkim@georgiasouthern.edu
  organization: Georgia Southern University,Information Technology Department,Statesboro,GA,U.S.A
BookMark eNo1zztPwzAYhWEjwQCl_4DBE1uCHce3sWqBIoWLKIiNypfPYCk4leMg8e8pAqazPDrSe4IO05AAoXNKakqJvtjcPayql5gKZC6l4HVDGlZT0jRMS3qA5lpqxThhLVeCH6PXFcAOd2ByiukN3w4eehyGjB9N7PNgPN6UPLkyZdPjNZi-vO9RimXIP_4zGryKY8nRTgU8XrhhGkt0eANp3INTdBRMP8L8b2fo-eryabmuuvvrm-WiqyKlulSS8GBVsNKIVjPHrKDWQjDOemg9aQJV3DVet9YLJVUwQjhlDAHqWKt9YDN09vsbAWC7y_HD5K_tfzb7BmW1Vys
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SNPD-Winter57765.2023.10223971
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350345865
EndPage 281
ExternalDocumentID 10223971
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-705fb8fb7a6493c3b61bbefacbde4d02f185c2d94bd6878fa66c8aa0e1c349df3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:44 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-705fb8fb7a6493c3b61bbefacbde4d02f185c2d94bd6878fa66c8aa0e1c349df3
PageCount 8
ParticipantIDs ieee_primary_10223971
PublicationCentury 2000
PublicationDate 2023-July-5
PublicationDateYYYYMMDD 2023-07-05
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-5
  day: 05
PublicationDecade 2020
PublicationTitle 2023 26th ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter)
PublicationTitleAbbrev SNPDWINTER
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9133096
Snippet Railway infrastructure plays a vital role in modern transportation systems, facilitating the efficient movement of people and goods. However, the integrity and...
SourceID ieee
SourceType Publisher
StartPage 274
SubjectTerms Acoustics
DAS
Deep learning
Distributed databases
HTL
HTL Fiber
LSTM
Predictive models
railroad health
railroad monitoring
Sensors
Structural Health Monitoring
Time division multiplexing
Transportation
Title Deep Learning Model for Railroad Structural Health Monitoring via Distributed Acoustic Sensing
URI https://ieeexplore.ieee.org/document/10223971
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxGA1aRDypWHEnB_GWdpZMlqNYiwcpxSr2ZMnypQyUmVJrf79JZlQ8ePAWEpJhvjDzsnzvPYSu_SKcMWEYETRzhLLC_wdVBkTkLNUefjLnomvJIx-NxHQqxy1ZPXJhACAmn0EvFONdvq3NRzgq64fdicdPv9nZ5pw1ZK1ddNPqZvYno_GAvAaZhVXh24tesAbvfXX6ZZ8S0WO4_8_nHqDuDw8Pj78R5hBtQXWE3gYAS9zqos5xMDNbYL_0xE-qXKxqZfEkasIGPQ3csIxw8-WGIzy8KRUeBLXcYHQFFt-aOhp64UlIZa_mXfQyvH--eyCtSwIp01SuCU8Kp4XTXDEqc5NrH2QNThltgdokcx6RTWYl1ZYJLpxizAilEkhNTqV1-THqVHUFJwhLE-QDdcqczGlCfQ-VmFRzkExoP-Ap6obgzJaNEMbsKy5nf9Sfo70wBTG7tbhAHf_2cIl2zGZdvq-u4vR9AugbnvU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA2ioq5UrPg2C3E37TwymWQp1lKxDsVW7MqSx00ZKJ1Sa7_fJDNVXLhwFwJJ4Ibk5HHPOQjd2EM4pUzRgJHYBISmdh8UMQQsoZG08BMb411Lelmes9GI92uyuufCAIBPPoOmK_q_fF2qT_dU1nK3E4uf9rKzlRIShxVdawfd1sqZrUHebwdvTmhhkWYZTZvOHLy5bvbLQMXjR2f_nyMfoMYPEw_3vzHmEG3A7Ai9twHmuFZGnWBnZzbF9vCJX0QxXZRC44FXhXWKGrjiGeFq7bpHPLwqBG47vVxndQUa36nSW3rhgUtmn00a6LXzMLzvBrVPQlBEEV8GWZgayYzMBCU8UYm0YZZghJIaiA5jYzFZxZoTqSnLmBGUKiZECJFKCNcmOUabs3IGJwhz5QQEZUQNT0hIbAsRqkhmwCmTtsNT1HDBGc8rKYzxOi5nf9Rfo93u8Lk37j3mT-doz02Hz3VNL9CmjQRcom21WhYfiys_lV9XFaI8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+26th+ACIS+International+Winter+Conference+on+Software+Engineering%2C+Artificial+Intelligence%2C+Networking+and+Parallel%2FDistributed+Computing+%28SNPD-Winter%29&rft.atitle=Deep+Learning+Model+for+Railroad+Structural+Health+Monitoring+via+Distributed+Acoustic+Sensing&rft.au=Rahman%2C+Md+Arifur&rft.au=Taheri%2C+Hossein&rft.au=Kim%2C+Jongyeop&rft.date=2023-07-05&rft.pub=IEEE&rft.spage=274&rft.epage=281&rft_id=info:doi/10.1109%2FSNPD-Winter57765.2023.10223971&rft.externalDocID=10223971