PerDetect: A Personalized Arrhythmia Detection System Based on Unsupervised Autoencoder
Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Deep learning has been widely used in arrhythmia detection. However, the application of...
Uložené v:
| Vydané v: | 2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT) s. 914 - 919 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
10.11.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Deep learning has been widely used in arrhythmia detection. However, the application of unsupervised learning to arrhythmia detection is not extensive. This paper proposes a personalized arrhythmia detection system PerDetect based on an unsupervised autoencoder. The system trains a separate BiLSTM-based autoencoder BiAE for each patient for arrhythmia detection. BiAE only needs to use the patient's normal heartbeat for training, which effectively avoids the problem of data imbalance. We carried out experiments on MIT-BIH Arrhythmia Database. Experiments show that the system only needs a small amount of ECG training data (within five minutes) to achieve good performance. The ACC of our method on MIT-BIH Arrhythmia Database is 97%. |
|---|---|
| AbstractList | Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Deep learning has been widely used in arrhythmia detection. However, the application of unsupervised learning to arrhythmia detection is not extensive. This paper proposes a personalized arrhythmia detection system PerDetect based on an unsupervised autoencoder. The system trains a separate BiLSTM-based autoencoder BiAE for each patient for arrhythmia detection. BiAE only needs to use the patient's normal heartbeat for training, which effectively avoids the problem of data imbalance. We carried out experiments on MIT-BIH Arrhythmia Database. Experiments show that the system only needs a small amount of ECG training data (within five minutes) to achieve good performance. The ACC of our method on MIT-BIH Arrhythmia Database is 97%. |
| Author | Zhong, Zhaoyi Sun, Le |
| Author_xml | – sequence: 1 givenname: Zhaoyi surname: Zhong fullname: Zhong, Zhaoyi email: 20201221065@nuist.edu.cn organization: Nanjing University of Information Science and Technology,Department of Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET),Nanjing,China – sequence: 2 givenname: Le surname: Sun fullname: Sun, Le email: LeSun1@nuist.edu.cn organization: Nanjing University of Information Science and Technology,Department of Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET),Nanjing,China |
| BookMark | eNo1j9FKwzAYRiPohc69gRd5gdYkf5Ku3tWqczBQcMPLkTR_WWBNR5oJ9emtTK8OBw4ffDfkMvQBCaGc5Zyz8r6qq9VGMw5FLpiAnDMlFlqxCzIvi3IBioEquVTX5PMd4xMmbNIDregkQx_MwX-jo1WM-zHtO2_oufB9oB_jkLCjj2aYism3YTgdMX75X69OqcfQ9A7jLblqzWHA-R9nZPvyvKlfs_XbclVX68xzXqZMK2t1qwUU0gjZWCsBWMktoC4A2QSh0WnmJDTcNVK2WrfYGukUFJYbmJG7865HxN0x-s7Ecff_F34AsHpQ7w |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ACAIT60137.2023.10528650 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350359145 |
| EndPage | 919 |
| ExternalDocumentID | 10528650 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-65bb6f62374a24cbb433091b3e673e03e626ed60d43c1dc44f66fefa4d537b1a3 |
| IEDL.DBID | RIE |
| IngestDate | Wed May 22 07:08:16 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-65bb6f62374a24cbb433091b3e673e03e626ed60d43c1dc44f66fefa4d537b1a3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10528650 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Nov.-10 |
| PublicationDateYYYYMMDD | 2023-11-10 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT) |
| PublicationTitleAbbrev | ACAIT |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8501534 |
| Snippet | Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Cardiovascular disease has become a common cause of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 914 |
| SubjectTerms | Arrhythmia Arrhythmia detection autoencoder ECG signal Electrocardiography Heart beat Real-time systems Training Training data unsupervised Learning |
| Title | PerDetect: A Personalized Arrhythmia Detection System Based on Unsupervised Autoencoder |
| URI | https://ieeexplore.ieee.org/document/10528650 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmACRBFveWB1iWPHjtnKowIJVRla0a3y46J2IEVpggS_HjtpQAwMTH7Ikq3z4zvb990hdOVVZA_SRhPpUkG4cRFRNndhLZs40qlNXBO15FmOx-lsprINWb3hwgBAY3wGg5Bt_vLdytbhqczv8CQQKf0NfVtK0ZK1OuucSF37wT9NRPChNwhBwQdd81-BUxrcGO39s8d91P9h4OHsG1sO0BYUh-glg_Iewqv_DR7irFOjP8HhYVkuPqrF61LjtoUXN269keNbD1QO-_K0WNdv4WwI5WFdrYITSwdlH01HD5O7R7IJjECWlKqKiMQYkXvFRXIdc2sMZ8zjvmEgJIPIJ7EAJyLHmaXOcp4LkUOuuUuYNFSzI9QrVgUcIyxAUJcDo2AV11aZWHFlqQI_bSnV9AT1g1Tmb63vi3knkNM_6s_QbpA9aQzlzlGvKmu4QDv2vVquy8tmxr4AQESZyA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQYIJEEW88cCaEseOE7OFR9WKUmVoRbfKj4vagbRKEyT49dhpA2JgYLIdJXJ0F-e7OPfdh9CNDZEtSCvpRSbmHlPG94TOjHuWVeDLWIemVi0ZRMNhPJmIdENWr7kwAFAnn0HHdet_-WahK7dVZld46IiU9gt920lnbehaTX6OL27t7fdH3FXR6zhZ8E5zwS_plBo5uvv_nPMAtX84eDj9RpdDtAX5EXpNoXgEt-9_hxOcNoH0JxicFMXso5y9zSVen2ENjtf1yPG9hSqD7Xicr6qlezu4cVKVC1fG0kDRRuPu0-ih522kEbw5IaL0eKgUz2zoEjEZMK0Uo9Qiv6LAIwq-bQIOhvuGUU2MZizjPINMMhPSSBFJj1ErX-RwgjAHTkwGlIAWTGqhAsGEJgKs42IiySlqO6tMl-vqF9PGIGd_HL9Gu73Ry2A66A-fz9Ge84NXp81doFZZVHCJdvR7OV8VV7X3vgBx_50R |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+7th+Asian+Conference+on+Artificial+Intelligence+Technology+%28ACAIT%29&rft.atitle=PerDetect%3A+A+Personalized+Arrhythmia+Detection+System+Based+on+Unsupervised+Autoencoder&rft.au=Zhong%2C+Zhaoyi&rft.au=Sun%2C+Le&rft.date=2023-11-10&rft.pub=IEEE&rft.spage=914&rft.epage=919&rft_id=info:doi/10.1109%2FACAIT60137.2023.10528650&rft.externalDocID=10528650 |