PerDetect: A Personalized Arrhythmia Detection System Based on Unsupervised Autoencoder

Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Deep learning has been widely used in arrhythmia detection. However, the application of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT) s. 914 - 919
Hlavní autori: Zhong, Zhaoyi, Sun, Le
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 10.11.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Deep learning has been widely used in arrhythmia detection. However, the application of unsupervised learning to arrhythmia detection is not extensive. This paper proposes a personalized arrhythmia detection system PerDetect based on an unsupervised autoencoder. The system trains a separate BiLSTM-based autoencoder BiAE for each patient for arrhythmia detection. BiAE only needs to use the patient's normal heartbeat for training, which effectively avoids the problem of data imbalance. We carried out experiments on MIT-BIH Arrhythmia Database. Experiments show that the system only needs a small amount of ECG training data (within five minutes) to achieve good performance. The ACC of our method on MIT-BIH Arrhythmia Database is 97%.
AbstractList Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Deep learning has been widely used in arrhythmia detection. However, the application of unsupervised learning to arrhythmia detection is not extensive. This paper proposes a personalized arrhythmia detection system PerDetect based on an unsupervised autoencoder. The system trains a separate BiLSTM-based autoencoder BiAE for each patient for arrhythmia detection. BiAE only needs to use the patient's normal heartbeat for training, which effectively avoids the problem of data imbalance. We carried out experiments on MIT-BIH Arrhythmia Database. Experiments show that the system only needs a small amount of ECG training data (within five minutes) to achieve good performance. The ACC of our method on MIT-BIH Arrhythmia Database is 97%.
Author Zhong, Zhaoyi
Sun, Le
Author_xml – sequence: 1
  givenname: Zhaoyi
  surname: Zhong
  fullname: Zhong, Zhaoyi
  email: 20201221065@nuist.edu.cn
  organization: Nanjing University of Information Science and Technology,Department of Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET),Nanjing,China
– sequence: 2
  givenname: Le
  surname: Sun
  fullname: Sun, Le
  email: LeSun1@nuist.edu.cn
  organization: Nanjing University of Information Science and Technology,Department of Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET),Nanjing,China
BookMark eNo1j9FKwzAYRiPohc69gRd5gdYkf5Ku3tWqczBQcMPLkTR_WWBNR5oJ9emtTK8OBw4ffDfkMvQBCaGc5Zyz8r6qq9VGMw5FLpiAnDMlFlqxCzIvi3IBioEquVTX5PMd4xMmbNIDregkQx_MwX-jo1WM-zHtO2_oufB9oB_jkLCjj2aYism3YTgdMX75X69OqcfQ9A7jLblqzWHA-R9nZPvyvKlfs_XbclVX68xzXqZMK2t1qwUU0gjZWCsBWMktoC4A2QSh0WnmJDTcNVK2WrfYGukUFJYbmJG7865HxN0x-s7Ecff_F34AsHpQ7w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACAIT60137.2023.10528650
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350359145
EndPage 919
ExternalDocumentID 10528650
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-65bb6f62374a24cbb433091b3e673e03e626ed60d43c1dc44f66fefa4d537b1a3
IEDL.DBID RIE
IngestDate Wed May 22 07:08:16 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-65bb6f62374a24cbb433091b3e673e03e626ed60d43c1dc44f66fefa4d537b1a3
PageCount 6
ParticipantIDs ieee_primary_10528650
PublicationCentury 2000
PublicationDate 2023-Nov.-10
PublicationDateYYYYMMDD 2023-11-10
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT)
PublicationTitleAbbrev ACAIT
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8501534
Snippet Cardiovascular disease has become a common cause of death. Arrhythmia is a common cardiovascular disease. Cardiovascular disease has become a common cause of...
SourceID ieee
SourceType Publisher
StartPage 914
SubjectTerms Arrhythmia
Arrhythmia detection
autoencoder
ECG signal
Electrocardiography
Heart beat
Real-time systems
Training
Training data
unsupervised Learning
Title PerDetect: A Personalized Arrhythmia Detection System Based on Unsupervised Autoencoder
URI https://ieeexplore.ieee.org/document/10528650
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmACRBFveWB1iWPHjtnKowIJVRla0a3y46J2IEVpggS_HjtpQAwMTH7Ikq3z4zvb990hdOVVZA_SRhPpUkG4cRFRNndhLZs40qlNXBO15FmOx-lsprINWb3hwgBAY3wGg5Bt_vLdytbhqczv8CQQKf0NfVtK0ZK1OuucSF37wT9NRPChNwhBwQdd81-BUxrcGO39s8d91P9h4OHsG1sO0BYUh-glg_Iewqv_DR7irFOjP8HhYVkuPqrF61LjtoUXN269keNbD1QO-_K0WNdv4WwI5WFdrYITSwdlH01HD5O7R7IJjECWlKqKiMQYkXvFRXIdc2sMZ8zjvmEgJIPIJ7EAJyLHmaXOcp4LkUOuuUuYNFSzI9QrVgUcIyxAUJcDo2AV11aZWHFlqQI_bSnV9AT1g1Tmb63vi3knkNM_6s_QbpA9aQzlzlGvKmu4QDv2vVquy8tmxr4AQESZyA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQYIJEEW88cCaEseOE7OFR9WKUmVoRbfKj4vagbRKEyT49dhpA2JgYLIdJXJ0F-e7OPfdh9CNDZEtSCvpRSbmHlPG94TOjHuWVeDLWIemVi0ZRMNhPJmIdENWr7kwAFAnn0HHdet_-WahK7dVZld46IiU9gt920lnbehaTX6OL27t7fdH3FXR6zhZ8E5zwS_plBo5uvv_nPMAtX84eDj9RpdDtAX5EXpNoXgEt-9_hxOcNoH0JxicFMXso5y9zSVen2ENjtf1yPG9hSqD7Xicr6qlezu4cVKVC1fG0kDRRuPu0-ih522kEbw5IaL0eKgUz2zoEjEZMK0Uo9Qiv6LAIwq-bQIOhvuGUU2MZizjPINMMhPSSBFJj1ErX-RwgjAHTkwGlIAWTGqhAsGEJgKs42IiySlqO6tMl-vqF9PGIGd_HL9Gu73Ry2A66A-fz9Ge84NXp81doFZZVHCJdvR7OV8VV7X3vgBx_50R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+7th+Asian+Conference+on+Artificial+Intelligence+Technology+%28ACAIT%29&rft.atitle=PerDetect%3A+A+Personalized+Arrhythmia+Detection+System+Based+on+Unsupervised+Autoencoder&rft.au=Zhong%2C+Zhaoyi&rft.au=Sun%2C+Le&rft.date=2023-11-10&rft.pub=IEEE&rft.spage=914&rft.epage=919&rft_id=info:doi/10.1109%2FACAIT60137.2023.10528650&rft.externalDocID=10528650