Multi-UAV Autonomous Obstacle Avoidance Based on Reinforcement Learning
Obstacle avoidance is a necessary behaviour to ensure the safety of UAV. In this paper, aiming at the problem of autonomous learning and obstacle avoidance of multiple UAVs in the multi-obstacle map environment, an obstacle avoidance method of UAVs based on an improved reward deep Q learning network...
Uloženo v:
| Vydáno v: | Chinese Control Conference s. 8657 - 8661 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Technical Committee on Control Theory, Chinese Association of Automation
24.07.2023
|
| Témata: | |
| ISSN: | 1934-1768 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Obstacle avoidance is a necessary behaviour to ensure the safety of UAV. In this paper, aiming at the problem of autonomous learning and obstacle avoidance of multiple UAVs in the multi-obstacle map environment, an obstacle avoidance method of UAVs based on an improved reward deep Q learning network is proposed. According to the dynamics model of UAV, the three-dimensional dynamic equation is established, and the combination of pitch angle and heading angle constructs the action space of UAV. a new reward evaluation method, which adaptively adjusts the weight of the reward according to the distance between the UAV and the obstacle, is developed thus improving the performance of the UAV. Thus, the obstacle avoidance performance of multiple UAVs in unknown environment can be effectively improved. Finally, by comparing the traditional deep Q learning network, the simulation results show that the algorithm in this paper is reasonable, and UAVs can successfully achieve obstacle avoidance in unknown environment. |
|---|---|
| AbstractList | Obstacle avoidance is a necessary behaviour to ensure the safety of UAV. In this paper, aiming at the problem of autonomous learning and obstacle avoidance of multiple UAVs in the multi-obstacle map environment, an obstacle avoidance method of UAVs based on an improved reward deep Q learning network is proposed. According to the dynamics model of UAV, the three-dimensional dynamic equation is established, and the combination of pitch angle and heading angle constructs the action space of UAV. a new reward evaluation method, which adaptively adjusts the weight of the reward according to the distance between the UAV and the obstacle, is developed thus improving the performance of the UAV. Thus, the obstacle avoidance performance of multiple UAVs in unknown environment can be effectively improved. Finally, by comparing the traditional deep Q learning network, the simulation results show that the algorithm in this paper is reasonable, and UAVs can successfully achieve obstacle avoidance in unknown environment. |
| Author | Li, Jinna Li, Zheng Wang, Yanhui |
| Author_xml | – sequence: 1 givenname: Zheng surname: Li fullname: Li, Zheng email: 386184452@qq.com organization: Liaoning Petrochemical University,Fushun,Liaoning,113001 – sequence: 2 givenname: Jinna surname: Li fullname: Li, Jinna email: lijinna_721@126.comn organization: Liaoning Petrochemical University,Fushun,Liaoning,113001 – sequence: 3 givenname: Yanhui surname: Wang fullname: Wang, Yanhui email: wangyanhui@lnpu.edu.cn organization: Liaoning Petrochemical University,Fushun,Liaoning,113001 |
| BookMark | eNo1j91KwzAYQKMouM29gWBeoDNf0_x8l7W4KVQG4rwdafZFIlsibSf49g7Uq3N3OGfKLlJOxNgtiEUpEfCuaRplNZpFKUq5AFFWwpjyjM3RWLTWKAuqkudsAiirAoy2V2w6DB9CaIEgJ2z1fNyPsdjUb7w-jjnlQz4OfN0No_N74vVXjjuXPPF7N9CO58RfKKaQe08HSiNvyfUppvdrdhncfqD5H2dss3x4bR6Ldr16auq2iAA4Fgq70oWuQ_RGIQjlTkkGDHpJRkKoCJzvtBOKtAMVrAxaBy9sJUR3OpEzdvPrjUS0_ezjwfXf2_9x-QN5-E5t |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/CCC58697.2023.10240772 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9789887581543 9887581542 |
| EISSN | 1934-1768 |
| EndPage | 8661 |
| ExternalDocumentID | 10240772 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62073158 funderid: 10.13039/501100001809 |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i119t-59b2afbb99c759105a7687179c3e731f4e1acb6a05e6a15f83f66fc08400b5433 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:47:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-59b2afbb99c759105a7687179c3e731f4e1acb6a05e6a15f83f66fc08400b5433 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10240772 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-July-24 |
| PublicationDateYYYYMMDD | 2023-07-24 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Control Conference |
| PublicationTitleAbbrev | CCC |
| PublicationYear | 2023 |
| Publisher | Technical Committee on Control Theory, Chinese Association of Automation |
| Publisher_xml | – name: Technical Committee on Control Theory, Chinese Association of Automation |
| SSID | ssj0060913 |
| Score | 2.2262294 |
| Snippet | Obstacle avoidance is a necessary behaviour to ensure the safety of UAV. In this paper, aiming at the problem of autonomous learning and obstacle avoidance of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 8657 |
| SubjectTerms | Adaptation models Autonomous aerial vehicles Decision making DQN Improved reward evaluation strategy Multi-UAV obstacle avoidance algorithm Neural networks Q-learning Simulation Solid modeling |
| Title | Multi-UAV Autonomous Obstacle Avoidance Based on Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/10240772 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgYoCFVxFveWB1iePYjscQURhQqRCtulW2c426JKik_X5st-UxMLBFkaJIx497z7XPuQjdJLmljoXyUmYd8XzDEJ-GWJJxy8C5PNXRUmj8JAeDfDJRw7VYPWphACBePoNeeIxn-VVjF6FU5ld44B_S77jbUoqVWGuz7YpgcLm6wJUyRdVtWZY8F0r2QoPw3ubTX01UYgzp7__z7weo-63Gw8OvOHOItqA-Qns_jASP0UPU0ZJRMcbFog06BU_o8bPxqZ-fFrhYNrMqDC--80Grwk2NXyBaptpYHcRrl9W3Lhr171_LR7JukUBmlKqWcGVS7Yzx8EruIz_Xnj54hqY80pJRlwHV1gidcBCacpczJ4Sziad1ieEZYyeoUzc1nCLMBROQV6zSYIKjjQKpNEsro0KSJuAMdQMm0_eVC8Z0A8f5H-8v0G5APtRB0-wSddr5Aq7Qjl22s4_5dRy7T8XemVE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQQIWXkW88cDqksSxE48lohRRSoXaqltlO2fUJUEl7e_HdlMeAwObFcmKdBff3Xfx9x1CN0GqQ0NdeynWhli8oYgtQzSJmaZgTBpJLyk07iX9fjqZiEFNVvdcGADwl8-g5Zb-X35e6oVrldkT7vBHYiPuphudVdO11oGXO4nL1RWuiIpQ3GZZxlIukpYbEd5ab_41RsVnkc7eP9-_j5rffDw8-Mo0B2gDikO0-0NK8Ag9eCYtGbXHuL2oHFPBQnr8omzxZz8M3F6Ws9w5GN_ZtJXjssCv4EVTte8P4lpn9a2JRp37YdYl9ZAEMgtDUREmVCSNUtbACbO5n0kLICxGE9bWCQ1NDKHUisuAAZchMyk1nBsdWGAXKBZTeowaRVnACcKMUw5pTnMJymnaCEiEpFGuhCvTOJyiprPJ9H2lgzFdm-Psj-fXaLs7fO5Ne4_9p3O047zguqJRfIEa1XwBl2hLL6vZx_zK-_ET9Secmg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Multi-UAV+Autonomous+Obstacle+Avoidance+Based+on+Reinforcement+Learning&rft.au=Li%2C+Zheng&rft.au=Li%2C+Jinna&rft.au=Wang%2C+Yanhui&rft.date=2023-07-24&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=8657&rft.epage=8661&rft_id=info:doi/10.23919%2FCCC58697.2023.10240772&rft.externalDocID=10240772 |