Verification of Hardware Resource Utilization through High Level Synthesis for FPGA Implementation

Recently, there has been a sharp rise in demand for hardware implementations because of the improved accuracy of Convolutional Neural Networks (CNN) on a wide range of classification and recognition applications. To achieve the needed performance, they include heavy processor operations and memory b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 4th IEEE Global Conference for Advancement in Technology (GCAT) s. 1 - 6
Hlavní autoři: Pandey, Jyoti, Asati, Abhijit R., Shenoy, Meetha V., Sikka, Prateek
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 06.10.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, there has been a sharp rise in demand for hardware implementations because of the improved accuracy of Convolutional Neural Networks (CNN) on a wide range of classification and recognition applications. To achieve the needed performance, they include heavy processor operations and memory bandwidth. For optimized hardware deployment, which necessitates thorough optimization of system architectures and algorithms to get particularly efficient designs, a target system's hardware resources and an estimation of its performance at a greater degree of abstraction are crucial. Since the programmable hardware fabric may be customized for each unique network, Field Programmable Gate Arrays (FPGA) can accomplish this efficiency in this situation. This paper shows the high-level synthesis (HLS) of each of the different layers of optimized CNN using the MATLAB HDL coder. Along with its HDL resource utilization report, we also investigated the computational processes and hardware resource estimation of the previously developed optimized CNN. The hardware resources required by all the convolutional and fully connected layers of the optimized CNN matches exactly will the previously calculated resources. So, the hardware resource utilization is verified through HLS. The architecture takes fixed-point math into account. All layers are synthesized in Vivado 2022.2 with the Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit as the target.
AbstractList Recently, there has been a sharp rise in demand for hardware implementations because of the improved accuracy of Convolutional Neural Networks (CNN) on a wide range of classification and recognition applications. To achieve the needed performance, they include heavy processor operations and memory bandwidth. For optimized hardware deployment, which necessitates thorough optimization of system architectures and algorithms to get particularly efficient designs, a target system's hardware resources and an estimation of its performance at a greater degree of abstraction are crucial. Since the programmable hardware fabric may be customized for each unique network, Field Programmable Gate Arrays (FPGA) can accomplish this efficiency in this situation. This paper shows the high-level synthesis (HLS) of each of the different layers of optimized CNN using the MATLAB HDL coder. Along with its HDL resource utilization report, we also investigated the computational processes and hardware resource estimation of the previously developed optimized CNN. The hardware resources required by all the convolutional and fully connected layers of the optimized CNN matches exactly will the previously calculated resources. So, the hardware resource utilization is verified through HLS. The architecture takes fixed-point math into account. All layers are synthesized in Vivado 2022.2 with the Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit as the target.
Author Pandey, Jyoti
Shenoy, Meetha V.
Sikka, Prateek
Asati, Abhijit R.
Author_xml – sequence: 1
  givenname: Jyoti
  surname: Pandey
  fullname: Pandey, Jyoti
  email: p20180412@pilani.bits-pilani.ac.in
  organization: Birla Institute of Technology and Science (BITS-Pilani Campus),EEE Department,Pilani,Rajasthan,India
– sequence: 2
  givenname: Abhijit R.
  surname: Asati
  fullname: Asati, Abhijit R.
  email: abhijit_asati@pilani.bits-pilani.ac.in
  organization: Birla Institute of Technology and Science (BITS-Pilani Campus),EEE Department,Pilani,Rajasthan,India
– sequence: 3
  givenname: Meetha V.
  surname: Shenoy
  fullname: Shenoy, Meetha V.
  email: meetha.shenoy@pilani.bits-pilani.ac.in
  organization: Birla Institute of Technology and Science (BITS-Pilani Campus),EEE Department,Pilani,Rajasthan,India
– sequence: 4
  givenname: Prateek
  surname: Sikka
  fullname: Sikka, Prateek
  email: prateeksikka@gmail.com
  organization: STMicroelectronics,India
BookMark eNo1j8tKw0AYhUfQhda-geC8QOJcMkn-ZQg2KQQUbd2WyfQfM5BLmaRKffoGq5tzFucC3x257oceCXnkLOScwVORZxsFkLBQMCFDzqSSkosrsoQEUqmYZEpwdkvqD_TOOqMnN_R0sLTUfv-tPdI3HIejN0i3k2vdz6UwNX44fja0dLNU-IUtfT_1U4OjG6kdPF29Fhldd4cWO-yn39E9ubG6HXH55wuyXT1v8jKoXop1nlWB4xymQMWordzXIkmjVEMkRWoMMh2lFpDHyhiGMragUjTcxIgQRyDqmQPmDIxckIfLr0PE3cG7TvvT7h9dngHB-VTe
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GCAT59970.2023.10353312
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350305210
9798350305258
EndPage 6
ExternalDocumentID 10353312
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-56eaf3db27848a94328cce0a48f9e165cc0e36f958ec1c6ee96492b05295cc9c3
IEDL.DBID RIE
IngestDate Wed Jan 10 09:27:52 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-56eaf3db27848a94328cce0a48f9e165cc0e36f958ec1c6ee96492b05295cc9c3
PageCount 6
ParticipantIDs ieee_primary_10353312
PublicationCentury 2000
PublicationDate 2023-Oct.-6
PublicationDateYYYYMMDD 2023-10-06
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-6
  day: 06
PublicationDecade 2020
PublicationTitle 2023 4th IEEE Global Conference for Advancement in Technology (GCAT)
PublicationTitleAbbrev GCAT
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8466644
Snippet Recently, there has been a sharp rise in demand for hardware implementations because of the improved accuracy of Convolutional Neural Networks (CNN) on a wide...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms CNN
Convolutional neural networks
Deep learning
Estimation
Hardware
Hardware design languages
Hardware resource utilization
High-level synthesis
Logic gates
MATLAB HDL coder
Resource management
Systems architecture
Title Verification of Hardware Resource Utilization through High Level Synthesis for FPGA Implementation
URI https://ieeexplore.ieee.org/document/10353312
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4qHjypWPFNDl63bjaPTY6l2HqQUrCV3kqSncCCbqXdKv57kzRVPHjwFkIgMJPHZOb78iF0K0paOMt1xipR-QeKX8aSKZb5A1OAFIwYW0WxiXI0krOZGieyeuTCAEAEn0E3NGMtv1rYdUiV-R1OfXQSNIV3y1JsyFoJs0VydTfs9yZcqTLvBk3w7nb0L92UeG0MDv854RHq_BDw8Pj7ajlGO9CcIPPsV4tLOTa8cDhU3T_0EvA2B4-nbf2SiJU4KfDggOTAjwEbhJ8-Gx_vreoV9qEqHoyHPRx_B35NBKSmg6aD-0n_IUsSCVlNiGozLkA7WplQPpRaMVpIayHXTDoFRHBrc6DCKS7BEisAlGCqMLG8Z62y9BTtNYsGzhAuOKhcGEqMcYxWQmoOzMdv2qjSWCLPUScYaP62-QVjvrXNxR_9l-gguCEC38QV2muXa7hG-_a9rVfLm-i7L2WfnMo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBT2pWPFtDl63bjaPTY6l2FaspWArvZVNdgILupV2q_jvTdKt4sGDtxACgZk8JjPflw-hG5HSxBqeRSwXuXuguGUsmWKROzAFSMGINnkQm0iHQzmdqlFNVg9cGAAI4DNo-Wao5edzs_KpMrfDqYtOvKbwNmcsidd0rRq1RWJ12-u0x1ypNG55VfDWZvwv5ZRwcXT3_znlAWr-UPDw6PtyOURbUB4h_ezWi62zbHhusa-7f2QLwJssPJ5UxUtNrcS1Bg_2WA488Ogg_PRZuohvWSyxC1Zxd9Rr4_A_8GtNQSqbaNK9G3f6US2SEBWEqCriAjJLc-0LiDJTjCbSGIgzJq0CIrgxMVBhFZdgiBEASjCV6FDgM0YZeowa5byEE4QTDioWmhKtLaO5kBkH5iK4TKtUGyJPUdMbaPa2_gdjtrHN2R_912i3P34czAb3w4dztOddEmBw4gI1qsUKLtGOea-K5eIq-PELuk-gEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+4th+IEEE+Global+Conference+for+Advancement+in+Technology+%28GCAT%29&rft.atitle=Verification+of+Hardware+Resource+Utilization+through+High+Level+Synthesis+for+FPGA+Implementation&rft.au=Pandey%2C+Jyoti&rft.au=Asati%2C+Abhijit+R.&rft.au=Shenoy%2C+Meetha+V.&rft.au=Sikka%2C+Prateek&rft.date=2023-10-06&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FGCAT59970.2023.10353312&rft.externalDocID=10353312