Research on sEMG Pattern Recognition Algorithm and Implementation of a Gesture Recognition System

Pattern recognition of surface electromyogram (surface EMG, sEMG) signals can obtain human movement information. In recent years, this technology has been widely used in many fields. In the algorithm part, this paper proposes a model based on Convolutional Neural Network (CNN) and Recurrent Neural N...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD) s. 1 - 6
Hlavní autori: Tian, Yuepeng, Zhang, Zhimin, Li, Yuwen
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 02.11.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Pattern recognition of surface electromyogram (surface EMG, sEMG) signals can obtain human movement information. In recent years, this technology has been widely used in many fields. In the algorithm part, this paper proposes a model based on Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). The effects of different algorithm structures and parameter selections are compared. On this basis, Depthwise separable convolution is introduced to reduce the number of parameters while maintaining high accuracy. In addition, the attention module SElayer is introduced to further improve the performance of the algorithm. The final algorithm achieved an accuracy rate of 93.41% on the NinaPro-DB2 dataset. In addition to the algorithm, this paper also builds a sEMG gesture recognition system with the help of an embedded platform. The system is mainly composed of an 8channel sEMG acquisition board and a computer, and includes four functional modules: data acquisition and annotation, data preprocessing, model training and real-time classification. Finally, the system collected sEMG data from 7 subjects. The model achieved good results on the dataset and completed the real-time classification.
AbstractList Pattern recognition of surface electromyogram (surface EMG, sEMG) signals can obtain human movement information. In recent years, this technology has been widely used in many fields. In the algorithm part, this paper proposes a model based on Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). The effects of different algorithm structures and parameter selections are compared. On this basis, Depthwise separable convolution is introduced to reduce the number of parameters while maintaining high accuracy. In addition, the attention module SElayer is introduced to further improve the performance of the algorithm. The final algorithm achieved an accuracy rate of 93.41% on the NinaPro-DB2 dataset. In addition to the algorithm, this paper also builds a sEMG gesture recognition system with the help of an embedded platform. The system is mainly composed of an 8channel sEMG acquisition board and a computer, and includes four functional modules: data acquisition and annotation, data preprocessing, model training and real-time classification. Finally, the system collected sEMG data from 7 subjects. The model achieved good results on the dataset and completed the real-time classification.
Author Li, Yuwen
Tian, Yuepeng
Zhang, Zhimin
Author_xml – sequence: 1
  givenname: Yuepeng
  surname: Tian
  fullname: Tian, Yuepeng
  email: stjrrsroort@163.com
  organization: School of Instrument Science and Engineering Southeast University,Nanjing,China
– sequence: 2
  givenname: Zhimin
  surname: Zhang
  fullname: Zhang, Zhimin
  email: 1020232687@cpu.edu.cn
  organization: School of Science China Pharmaceutical University Nanjing,China
– sequence: 3
  givenname: Yuwen
  surname: Li
  fullname: Li, Yuwen
  email: liyuwen@seu.edu.cn
  organization: School of Instrument Science and Engineering Southeast University,Nanjing,China
BookMark eNpVj71OwzAUhY0EA5S-AYNfIMXXjp14rEIJkVqBWpgrO75uLSVOlZihb0_Fz8BwdIZP35HOHbmOQ0RCKLAFANOPTbXbPCkmOV9wxsUCWK4vEVdkrgtdCskElAz4LTFbnNCM7ZEOkU6rTU3fTEo4RrrFdjjEkMIFLLvDMIZ07KmJjjb9qcMeYzLfcPDU0Bqn9DniP2t3nhL29-TGm27C-W_PyMfz6r16ydavdVMt11kA0CmTShlWOMVVUTrJXV4YaIXJlS1bByr3VkDRgjJcAoCyXjqrhdfWgtXeCTEjDz-7ARH3pzH0Zjzv_56LLy81VC0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSMD60522.2023.10491043
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350318012
EndPage 6
ExternalDocumentID 10491043
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-566a07d62678d52d47a1c3a46b8cd164fb317c16a251116bf5db93f9bb1b9fd33
IEDL.DBID RIE
IngestDate Wed May 01 11:49:11 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-566a07d62678d52d47a1c3a46b8cd164fb317c16a251116bf5db93f9bb1b9fd33
PageCount 6
ParticipantIDs ieee_primary_10491043
PublicationCentury 2000
PublicationDate 2023-Nov.-2
PublicationDateYYYYMMDD 2023-11-02
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-2
  day: 02
PublicationDecade 2020
PublicationTitle 2023 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD)
PublicationTitleAbbrev ICSMD
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8495165
Snippet Pattern recognition of surface electromyogram (surface EMG, sEMG) signals can obtain human movement information. In recent years, this technology has been...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Attention Mechanisms
CNN
Computational modeling
Data acquisition
Data preprocessing
Embedded Systems
Gesture recognition
Pattern Recognition
Real-time systems
Recurrent neural networks
RNN
sEMG
Training
Title Research on sEMG Pattern Recognition Algorithm and Implementation of a Gesture Recognition System
URI https://ieeexplore.ieee.org/document/10491043
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6EePCkRozv9OC1uN2W7fZoENADhPhIuJE-lUS6ZAF_v7OF1XDw4K1pO2kyk-abaeebQejWikR7cASIF9IQDhhEFNeCOMUzLllHGJ3EZhNiNMonEznektUjF8Y5F5PPXLsaxr98W5h19VQGN5wDunHWQA0hsg1Zq87OSeTdU_dl-ADueVoRrFLWrrfvNE6JuNE__OeJR6j1y8DD4x9sOUZ7LpwgVafJ4SLgZW84wONYHTPg5zoNCBbuP98LiPg_5lgFi2P13_mWYBRw4bHCA0CCdel2pDaVy1vord977T6SbYsEMqNUrgg4YyoRFqISkdtOarlQ1DDQs86NhUjIa_APDM1UFUnQTPuO1ZJ5qTXV0lvGTlEzFMGdISyosk7klAlreJ5R7SRISaU5196w_By1Kv1MF5sqGNNaNRd_zF-ig8oKkbeXXqHmqly7a7RvvlazZXkTbfcNdD6csg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl5TN5vsZnOU2he2pWiF3kqetmCz0oe_32zaVXrw4C0kDIEJ4ZtJvm8GgHvNIml9IIAs4wpRj0FIUMmQETSlnCRMySg0m2D9fjYa8cFGrB60MMaYQD4ztWIY_vJ1rlbFU5m_4dSjGyW7YC-hNI7Wcq2SnxPxh079tffkA_S4kFjFpFYabLVOCcjRPPrnnseg-qvBg4MfdDkBO8adAlES5WDu4KLRa8FBqI_p4EtJBPILjx_vuc_5JzMonIah_u9sIzFyMLdQwJbHgtXcbFmta5dXwVuzMay30aZJAppizJfIh2MiYtrnJSzTSawpE1gR72mZKe1zISt9hKBwKopcAqfSJlpyYrmUWHKrCTkDFZc7cw4gw0IblmHCtKJZiqXh3ooLSam0imQXoFr4Z_y5roMxLl1z-cf8HThoD3vdcbfTf74Ch8WJBBVffA0qy_nK3IB99bWcLua34Ry_Aciwn_k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Sensing%2C+Measurement+%26+Data+Analytics+in+the+era+of+Artificial+Intelligence+%28ICSMD%29&rft.atitle=Research+on+sEMG+Pattern+Recognition+Algorithm+and+Implementation+of+a+Gesture+Recognition+System&rft.au=Tian%2C+Yuepeng&rft.au=Zhang%2C+Zhimin&rft.au=Li%2C+Yuwen&rft.date=2023-11-02&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICSMD60522.2023.10491043&rft.externalDocID=10491043