Research on sEMG Pattern Recognition Algorithm and Implementation of a Gesture Recognition System
Pattern recognition of surface electromyogram (surface EMG, sEMG) signals can obtain human movement information. In recent years, this technology has been widely used in many fields. In the algorithm part, this paper proposes a model based on Convolutional Neural Network (CNN) and Recurrent Neural N...
Uložené v:
| Vydané v: | 2023 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD) s. 1 - 6 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
02.11.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Pattern recognition of surface electromyogram (surface EMG, sEMG) signals can obtain human movement information. In recent years, this technology has been widely used in many fields. In the algorithm part, this paper proposes a model based on Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). The effects of different algorithm structures and parameter selections are compared. On this basis, Depthwise separable convolution is introduced to reduce the number of parameters while maintaining high accuracy. In addition, the attention module SElayer is introduced to further improve the performance of the algorithm. The final algorithm achieved an accuracy rate of 93.41% on the NinaPro-DB2 dataset. In addition to the algorithm, this paper also builds a sEMG gesture recognition system with the help of an embedded platform. The system is mainly composed of an 8channel sEMG acquisition board and a computer, and includes four functional modules: data acquisition and annotation, data preprocessing, model training and real-time classification. Finally, the system collected sEMG data from 7 subjects. The model achieved good results on the dataset and completed the real-time classification. |
|---|---|
| AbstractList | Pattern recognition of surface electromyogram (surface EMG, sEMG) signals can obtain human movement information. In recent years, this technology has been widely used in many fields. In the algorithm part, this paper proposes a model based on Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). The effects of different algorithm structures and parameter selections are compared. On this basis, Depthwise separable convolution is introduced to reduce the number of parameters while maintaining high accuracy. In addition, the attention module SElayer is introduced to further improve the performance of the algorithm. The final algorithm achieved an accuracy rate of 93.41% on the NinaPro-DB2 dataset. In addition to the algorithm, this paper also builds a sEMG gesture recognition system with the help of an embedded platform. The system is mainly composed of an 8channel sEMG acquisition board and a computer, and includes four functional modules: data acquisition and annotation, data preprocessing, model training and real-time classification. Finally, the system collected sEMG data from 7 subjects. The model achieved good results on the dataset and completed the real-time classification. |
| Author | Li, Yuwen Tian, Yuepeng Zhang, Zhimin |
| Author_xml | – sequence: 1 givenname: Yuepeng surname: Tian fullname: Tian, Yuepeng email: stjrrsroort@163.com organization: School of Instrument Science and Engineering Southeast University,Nanjing,China – sequence: 2 givenname: Zhimin surname: Zhang fullname: Zhang, Zhimin email: 1020232687@cpu.edu.cn organization: School of Science China Pharmaceutical University Nanjing,China – sequence: 3 givenname: Yuwen surname: Li fullname: Li, Yuwen email: liyuwen@seu.edu.cn organization: School of Instrument Science and Engineering Southeast University,Nanjing,China |
| BookMark | eNpVj71OwzAUhY0EA5S-AYNfIMXXjp14rEIJkVqBWpgrO75uLSVOlZihb0_Fz8BwdIZP35HOHbmOQ0RCKLAFANOPTbXbPCkmOV9wxsUCWK4vEVdkrgtdCskElAz4LTFbnNCM7ZEOkU6rTU3fTEo4RrrFdjjEkMIFLLvDMIZ07KmJjjb9qcMeYzLfcPDU0Bqn9DniP2t3nhL29-TGm27C-W_PyMfz6r16ydavdVMt11kA0CmTShlWOMVVUTrJXV4YaIXJlS1bByr3VkDRgjJcAoCyXjqrhdfWgtXeCTEjDz-7ARH3pzH0Zjzv_56LLy81VC0 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICSMD60522.2023.10491043 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350318012 |
| EndPage | 6 |
| ExternalDocumentID | 10491043 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-566a07d62678d52d47a1c3a46b8cd164fb317c16a251116bf5db93f9bb1b9fd33 |
| IEDL.DBID | RIE |
| IngestDate | Wed May 01 11:49:11 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-566a07d62678d52d47a1c3a46b8cd164fb317c16a251116bf5db93f9bb1b9fd33 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10491043 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Nov.-2 |
| PublicationDateYYYYMMDD | 2023-11-02 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-2 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD) |
| PublicationTitleAbbrev | ICSMD |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8495165 |
| Snippet | Pattern recognition of surface electromyogram (surface EMG, sEMG) signals can obtain human movement information. In recent years, this technology has been... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Attention Mechanisms CNN Computational modeling Data acquisition Data preprocessing Embedded Systems Gesture recognition Pattern Recognition Real-time systems Recurrent neural networks RNN sEMG Training |
| Title | Research on sEMG Pattern Recognition Algorithm and Implementation of a Gesture Recognition System |
| URI | https://ieeexplore.ieee.org/document/10491043 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6EePCkRozv9OC1uN2W7fZoENADhPhIuJE-lUS6ZAF_v7OF1XDw4K1pO2kyk-abaeebQejWikR7cASIF9IQDhhEFNeCOMUzLllHGJ3EZhNiNMonEznektUjF8Y5F5PPXLsaxr98W5h19VQGN5wDunHWQA0hsg1Zq87OSeTdU_dl-ADueVoRrFLWrrfvNE6JuNE__OeJR6j1y8DD4x9sOUZ7LpwgVafJ4SLgZW84wONYHTPg5zoNCBbuP98LiPg_5lgFi2P13_mWYBRw4bHCA0CCdel2pDaVy1vord977T6SbYsEMqNUrgg4YyoRFqISkdtOarlQ1DDQs86NhUjIa_APDM1UFUnQTPuO1ZJ5qTXV0lvGTlEzFMGdISyosk7klAlreJ5R7SRISaU5196w_By1Kv1MF5sqGNNaNRd_zF-ig8oKkbeXXqHmqly7a7RvvlazZXkTbfcNdD6csg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl5TN5vsZnOU2he2pWiF3kqetmCz0oe_32zaVXrw4C0kDIEJ4ZtJvm8GgHvNIml9IIAs4wpRj0FIUMmQETSlnCRMySg0m2D9fjYa8cFGrB60MMaYQD4ztWIY_vJ1rlbFU5m_4dSjGyW7YC-hNI7Wcq2SnxPxh079tffkA_S4kFjFpFYabLVOCcjRPPrnnseg-qvBg4MfdDkBO8adAlES5WDu4KLRa8FBqI_p4EtJBPILjx_vuc_5JzMonIah_u9sIzFyMLdQwJbHgtXcbFmta5dXwVuzMay30aZJAppizJfIh2MiYtrnJSzTSawpE1gR72mZKe1zISt9hKBwKopcAqfSJlpyYrmUWHKrCTkDFZc7cw4gw0IblmHCtKJZiqXh3ooLSam0imQXoFr4Z_y5roMxLl1z-cf8HThoD3vdcbfTf74Ch8WJBBVffA0qy_nK3IB99bWcLua34Ry_Aciwn_k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Sensing%2C+Measurement+%26+Data+Analytics+in+the+era+of+Artificial+Intelligence+%28ICSMD%29&rft.atitle=Research+on+sEMG+Pattern+Recognition+Algorithm+and+Implementation+of+a+Gesture+Recognition+System&rft.au=Tian%2C+Yuepeng&rft.au=Zhang%2C+Zhimin&rft.au=Li%2C+Yuwen&rft.date=2023-11-02&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICSMD60522.2023.10491043&rft.externalDocID=10491043 |