Novel Mahalanobis Distance and Variable Nearest Neighbors to Construct Weight Matrix based LPP: Application of Fault Diagnosis

Fault diagnosis techniques based on data-driven algorithms go mainstream gradually in industrial processes. Unfortunately, traditional data-driven algorithms cannot deal with massive high-dimensional and nonlinear strong correlation data. Based on this problem, Novel Mahalanobis Distance and Variabl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Automation Congress (Online) s. 2263 - 2267
Hlavní autoři: Zhu, Qun-Xiong, Qing, Hao-Yang, Zhang, Ning, Xu, Yuan, He, Yan-Lin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 25.11.2022
Témata:
ISSN:2688-0938
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fault diagnosis techniques based on data-driven algorithms go mainstream gradually in industrial processes. Unfortunately, traditional data-driven algorithms cannot deal with massive high-dimensional and nonlinear strong correlation data. Based on this problem, Novel Mahalanobis Distance and Variable Nearest Neighbors to Construct Weight Matrix based LPP (MV-LPP) is proposed in this paper. MV-LPP replaces the Euclidean distance used to measure the similarity between two sample points with the Mahalanobis distance, which takes in account the correlation of the samples, so that it can exclude the interference of correlation between the variables. Besides, the MV-LPP algorithm, corresponding to the location of each sample point in the data set, optimizes the method to screen the nearest neighbor points in the locality preserving projections algorithm, to the extent that MV-LPP can obtain the appropriate number of nearest neighbor points and the weight matrix can better preserver the spatial structure shape and achieve a better mapping effect. In final, a dataset of Tennessee Eastman Process (TEP) is utilized to validate the MV-LPP method and the positive results proved its effectiveness.
AbstractList Fault diagnosis techniques based on data-driven algorithms go mainstream gradually in industrial processes. Unfortunately, traditional data-driven algorithms cannot deal with massive high-dimensional and nonlinear strong correlation data. Based on this problem, Novel Mahalanobis Distance and Variable Nearest Neighbors to Construct Weight Matrix based LPP (MV-LPP) is proposed in this paper. MV-LPP replaces the Euclidean distance used to measure the similarity between two sample points with the Mahalanobis distance, which takes in account the correlation of the samples, so that it can exclude the interference of correlation between the variables. Besides, the MV-LPP algorithm, corresponding to the location of each sample point in the data set, optimizes the method to screen the nearest neighbor points in the locality preserving projections algorithm, to the extent that MV-LPP can obtain the appropriate number of nearest neighbor points and the weight matrix can better preserver the spatial structure shape and achieve a better mapping effect. In final, a dataset of Tennessee Eastman Process (TEP) is utilized to validate the MV-LPP method and the positive results proved its effectiveness.
Author Xu, Yuan
He, Yan-Lin
Qing, Hao-Yang
Zhu, Qun-Xiong
Zhang, Ning
Author_xml – sequence: 1
  givenname: Qun-Xiong
  surname: Zhu
  fullname: Zhu, Qun-Xiong
  email: zhuqx@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology,College of Information Science and Technology,Beijing,China
– sequence: 2
  givenname: Hao-Yang
  surname: Qing
  fullname: Qing, Hao-Yang
  email: haoyangqing360@gmail.com
  organization: Beijing University of Chemical Technology,College of Information Science and Technology,Beijing,China
– sequence: 3
  givenname: Ning
  surname: Zhang
  fullname: Zhang, Ning
  email: zhangnieng@126.com
  organization: Beijing University of Chemical Technology,College of Information Science and Technology,Beijing,China
– sequence: 4
  givenname: Yuan
  surname: Xu
  fullname: Xu, Yuan
  email: xuyuan@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology,College of Information Science and Technology,Beijing,China
– sequence: 5
  givenname: Yan-Lin
  surname: He
  fullname: He, Yan-Lin
  email: heyl@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology,College of Information Science and Technology,Beijing,China
BookMark eNo1kMtKAzEYRqMo2Na-gUheYGruzbgro1Wh1i68LEsy86eNjEmZpKIbn90RdXXgW5wD3xAdhRgAoXNKJpSS8qKaVXLK5HTCCGMTSohUlMoDNKRKSaEk5-oQDZjSuiAl1ydonNIrIYRxKqQgA_S1jO_Q4nuzNa0J0fqEr3zKJtSATWjws-m8sS3gJZgOUu7pN1sbu4RzxFUMKXf7OuOXnzn3ntz5D2xNggYvVqtLPNvtWl-b7GPA0eG52be5T5hNiMmnU3TsTJtg_McReppfP1a3xeLh5q6aLQpPaZkLSXitSqqF0Foz5TiZilKCED1ozYA5UltwwlHldM2kFQ00ioO1QjkqCB-hs1-vB4D1rvNvpvtc___FvwGT-2HD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CAC57257.2022.10056115
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665465336
9781665465335
EISSN 2688-0938
EndPage 2267
ExternalDocumentID 10056115
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-503c69184488826f307495e447491c2e2f0cbef4f16f8c25b4ded63ebb46f1403
IEDL.DBID RIE
IngestDate Wed Aug 27 02:57:15 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-503c69184488826f307495e447491c2e2f0cbef4f16f8c25b4ded63ebb46f1403
PageCount 5
ParticipantIDs ieee_primary_10056115
PublicationCentury 2000
PublicationDate 2022-Nov.-25
PublicationDateYYYYMMDD 2022-11-25
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-25
  day: 25
PublicationDecade 2020
PublicationTitle Chinese Automation Congress (Online)
PublicationTitleAbbrev CAC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002314540
Score 1.814093
Snippet Fault diagnosis techniques based on data-driven algorithms go mainstream gradually in industrial processes. Unfortunately, traditional data-driven algorithms...
SourceID ieee
SourceType Publisher
StartPage 2263
SubjectTerms Automation
Correlation
Euclidean distance
Fault diagnosis
Interference
Locality Preserving Projections
Manifolds
Nearest Neighbors
Shape
Tennessee Eastman Process
Title Novel Mahalanobis Distance and Variable Nearest Neighbors to Construct Weight Matrix based LPP: Application of Fault Diagnosis
URI https://ieeexplore.ieee.org/document/10056115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmACRBFveWBNSVznYbaqUDFAlIFHtyqxzyJSlaAmrZj47dy5LzEwsMRRlMSyL87dd77vjrEbhBwJ_hd9LwbfeDKx0lO-wYNMTIz6SoG0rthEnKbJeKyyFVndcWEAwAWfQY9O3V6-qfWcXGW4wsneJUr5bhxHS7LWxqGChgplk1uxgANf3Q4HwzDGTxJRoBC99cO_yqg4LTI6-Gf_h6y75ePxbKNpjtgOVMfsO60XMOXP-QdFJ9ZF2fB7Mgbp5rwy_A1RMPGieEppapsWWwTiKPKGtzWnQp0udSx_d85RfE87K784aTXDn7Lsjg-2e9u8tnyUz6ctduFC88qmy15HDy_DR29VTcErg0C1Xuj3daQQ0OGSRUxhcXEjOAIpsQm0AGF9XYCVNohsokVYSAMm6kNRyMhSVr8T1qnqCk4Zt0WR52FohIYcAU-utAQrQFs0KJTQ_hnr0uRNPpcJMybreTv_4_oF2ycREcVPhJesg8OHK7anF23ZzK6dmH8A8QOpAg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QIMEJEEO8yYFrR5ulW8ttGkxDbFUPA3ab2sQRlaYWrd3Eid-OHbpNHDhwaaqqL9lN7c_xZzN2i5AjwP-i63TA1Y4MjHRCV-NGBrqD9ioEaWyziU4UBZNJGNdkdcuFAQCbfAZN2rVr-bpQCwqV4Qwnf5co5TvUOquma61DKuiqUD25mgfsueFdr9vzO_hRIg4Uorm6_FcjFWtH-gf_fIND1tgw8ni8tjVHbAvyY_YVFUuY8VHyTvmJRZqV_IHcQTo5yTV_RRxMzCgeUaHassIRoTgqveRVwalVpy0ey99seBTvU82zT052TfNhHN_z7mZ1mxeG95PFrMJH2OS8rGywl_7juDdw6n4KTuZ5YeX4bku1Q4R0OGkRVRic3giPQEocPCVAGFelYKTx2iZQwk-lBt1uQZrKtqG6fidsOy9yOGXcpGmS-L4WChKEPEmoJBgByqBLEQrlnrEGCW_68VMyY7qS2_kfx2_Y3mA8Gk6HT9HzBdsndRHhT_iXbBtFAVdsVy2rrJxfW5V_A-tMrEs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Automation+Congress+%28Online%29&rft.atitle=Novel+Mahalanobis+Distance+and+Variable+Nearest+Neighbors+to+Construct+Weight+Matrix+based+LPP%3A+Application+of+Fault+Diagnosis&rft.au=Zhu%2C+Qun-Xiong&rft.au=Qing%2C+Hao-Yang&rft.au=Zhang%2C+Ning&rft.au=Xu%2C+Yuan&rft.date=2022-11-25&rft.pub=IEEE&rft.eissn=2688-0938&rft.spage=2263&rft.epage=2267&rft_id=info:doi/10.1109%2FCAC57257.2022.10056115&rft.externalDocID=10056115