Parking Slot Detection for Autonomous Parking System with Template Matching

In this paper, a parking slot detection algorithm based on a bird's eye view is proposed. A density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm and template matching algorithm are fused to detect parking slots in a bird's eye view. Progressive probabil...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control Conference s. 8038 - 8043
Hlavní autoři: Wang, Yijing, Wang, Runpeng, Li, Zheng, Zuo, Zhiqiang, Yu, Baowei
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Technical Committee on Control Theory, Chinese Association of Automation 24.07.2023
Témata:
ISSN:1934-1768
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a parking slot detection algorithm based on a bird's eye view is proposed. A density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm and template matching algorithm are fused to detect parking slots in a bird's eye view. Progressive probabilistic Hough line detection and an improved DBSCAN clustering algorithm is developed to locate the sidelines of parking slots. Then, template matching is provided to locate and classify the "T shape" and "L shape" marking points more accurately. Finally, the marking points and sidelines of parking slots are integrated to complete the parking slot detection. The recall rate and precision rate of experimental results are 74.4% and 92.0%.
ISSN:1934-1768
DOI:10.23919/CCC58697.2023.10241109