Low-Complexity Hybrid Algorithm for Decoding Convolutional Codes

The Viterbi algorithm is one of the most commonly used methods for decoding convolutional codes, which outputs a maximum-likelihood codeword for the input sequence. However, the complexity of the Viterbi algorithm is high when the constraint length is large. To address this issue, we propose a hybri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE 8th International Conference on Computer and Communications (ICCC) S. 2477 - 2482
Hauptverfasser: Fu, Ziyun, Liu, Haiyang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 09.12.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Viterbi algorithm is one of the most commonly used methods for decoding convolutional codes, which outputs a maximum-likelihood codeword for the input sequence. However, the complexity of the Viterbi algorithm is high when the constraint length is large. To address this issue, we propose a hybrid algorithm that contains at most two stages for decoding convolutional codes in this paper. In the first stage, the normalized min-sum algorithm (NMSA) with a small number of iterations is applied. If the output of the NMSA is not a codeword, the scarce-state-transition (SST) Viterbi algorithm is invoked for the second stage of decoding. We provide a method for constructing the input vector of the SST Viterbi algorithm, from which a truncating method is further presented for complexity reduction. Simulation results on two rate-l/2 convolutional codes show that the proposed hybrid algorithm has little performance degradation compared with the Viterbi algorithm. Meanwhile, the complexity of the proposed hybrid algorithm is reduced, especially in the high signal-to-noise ratio region.
AbstractList The Viterbi algorithm is one of the most commonly used methods for decoding convolutional codes, which outputs a maximum-likelihood codeword for the input sequence. However, the complexity of the Viterbi algorithm is high when the constraint length is large. To address this issue, we propose a hybrid algorithm that contains at most two stages for decoding convolutional codes in this paper. In the first stage, the normalized min-sum algorithm (NMSA) with a small number of iterations is applied. If the output of the NMSA is not a codeword, the scarce-state-transition (SST) Viterbi algorithm is invoked for the second stage of decoding. We provide a method for constructing the input vector of the SST Viterbi algorithm, from which a truncating method is further presented for complexity reduction. Simulation results on two rate-l/2 convolutional codes show that the proposed hybrid algorithm has little performance degradation compared with the Viterbi algorithm. Meanwhile, the complexity of the proposed hybrid algorithm is reduced, especially in the high signal-to-noise ratio region.
Author Fu, Ziyun
Liu, Haiyang
Author_xml – sequence: 1
  givenname: Ziyun
  surname: Fu
  fullname: Fu, Ziyun
  email: 1120190701@bit.edu.cn
  organization: XUTELI School, Beijing Institute of Technology,Beijing,China
– sequence: 2
  givenname: Haiyang
  surname: Liu
  fullname: Liu, Haiyang
  email: liuhaiyang@ime.ac.cn
  organization: Institute of Microelectronics, Chinese Academy of Sciences,Beijing,China
BookMark eNo1j8tKw0AYRkfQha2-gWBeIHHuk9lZxksLATftuszlnzqQZMo0XvL2FtTNdzibA98CXY55BITuCW4IwfphY4wRklHeUExpQzCWQtH2Ai2IlIILLIi6Ro9d_qpNHo49fKdprtazKylUq_6QS5rehyrmUj2BzyGNh8rk8TP3H1PKo-3PFuB0g66i7U9w-8cl2r08b8267t5eN2bV1YkQPdWcRKsxCPDc6eiUC9RZ7eG8TKhApaKBBeWj1MoHLoJ1gopW2Za1AXPFlujut5sAYH8sabBl3v-_Yj_-3kgV
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCC56324.2022.10065728
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665450517
9781665450515
EndPage 2482
ExternalDocumentID 10065728
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-41fa90e5ec4b9fb7bd2ba9ce2ba357d2672d3d7cf697cd45dab52587a838d0473
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:58 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-41fa90e5ec4b9fb7bd2ba9ce2ba357d2672d3d7cf697cd45dab52587a838d0473
PageCount 6
ParticipantIDs ieee_primary_10065728
PublicationCentury 2000
PublicationDate 2022-Dec.-9
PublicationDateYYYYMMDD 2022-12-09
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-9
  day: 09
PublicationDecade 2020
PublicationTitle 2022 IEEE 8th International Conference on Computer and Communications (ICCC)
PublicationTitleAbbrev ICCC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8231223
Snippet The Viterbi algorithm is one of the most commonly used methods for decoding convolutional codes, which outputs a maximum-likelihood codeword for the input...
SourceID ieee
SourceType Publisher
StartPage 2477
SubjectTerms Complexity theory
Convolution
Convolutional codes
Degradation
hybrid algorithm
Iterative decoding
normalized min-sum algorithm
Simulation
SST Viterbi algorithm
Viterbi algorithm
Title Low-Complexity Hybrid Algorithm for Decoding Convolutional Codes
URI https://ieeexplore.ieee.org/document/10065728
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3e_CauptNMpubsloqSOlBobeSx6wWalfabaX_3mS7VTx48BKSMEnIY5hMMt8MIdcGJJdaivBQxai_30qq0aVUGy9PtCh4YWwdbAIGg2w0UsMGrF5jYRCxNj7DbsjWf_mutMvwVOY53AtMYFmLtADkBqzV2Gwlsbp5zPNcBPfjXu1jrLul_hU3pRYbvf1_DnhAOj8AvGj4LVoOyQ7OjsjtU_lJA_8GH5bVOuqvA9oqupu-ll7Df3uP_P0zuvfqZGgT-Z5WzbHSU19yuOiQl97Dc96nTQAEOkkSVVGeFFrFKNByowoDxjGjlUWfpgIck8Bc6sAWUoF1XDhtBBMZ6CzNXMwhPSbtWTnDExLpxHkio5LMGg4OtMZCIA_-wrRCiE9JJ0x__LHxcTHezvzsj_pzshcWuTbsUBekXc2XeEl27aqaLOZX9c58AcuGkYE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UTfSkRoxve_Ba3O222-1Ns0ogIuGACTfSx6ySAGtgwfDvbZdF48GDl6Ztpm36mEynnW8GoVstYharmPuHKkrc_TYmCmxElHbyRPGMZdqUwSZEt5sMBrJXgdVLLAwAlMZn0PDZ8i_f5mbhn8ochzuBKWiyjXY4YzRYw7Uqq60wkHftNE25d0DuFD9KGxv6X5FTSsHRPPjnkIeo_gPBw71v4XKEtmB6jO47-SfxHOy9WBYr3Fp5vBV-GL_lTsd_n2B3A8WPTqH0bbDraVkdLDV2JQvzOnptPvXTFqlCIJBRGMqCsDBTMgAOhmmZaaEt1UoacGnEhaWxoDaywmSxFMYybpXmlCdCJVFiAyaiE1Sb5lM4RViF1hFpGSZGM2GFUpBxYN5jmJIggjNU99Mffqy9XAw3Mz__o_4G7bX6L51hp919vkD7fsFLMw95iWrFbAFXaNcsi9F8dl3u0heNWpTI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+8th+International+Conference+on+Computer+and+Communications+%28ICCC%29&rft.atitle=Low-Complexity+Hybrid+Algorithm+for+Decoding+Convolutional+Codes&rft.au=Fu%2C+Ziyun&rft.au=Liu%2C+Haiyang&rft.date=2022-12-09&rft.pub=IEEE&rft.spage=2477&rft.epage=2482&rft_id=info:doi/10.1109%2FICCC56324.2022.10065728&rft.externalDocID=10065728