Many-Objective Evolutionary Optimization Algorithm Based on Single Objective Population Distribution Characteristics

The objective based decomposition algorithm NSGA-III, which incorporates the Pareto dominance relation, shows great potential in solving many-objective optimization problems (MaOPs). However, NSGA-III is difficult in converging when the number of objectives increases. Therefore, an approach for many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS) S. 1 - 8
Hauptverfasser: Mao, Huiting, Shi, Xuhua, Zhang, Bin
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 22.09.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The objective based decomposition algorithm NSGA-III, which incorporates the Pareto dominance relation, shows great potential in solving many-objective optimization problems (MaOPs). However, NSGA-III is difficult in converging when the number of objectives increases. Therefore, an approach for many-objective evolutionary optimization based on single objective population distribution characteristics (MOEA-KTPC) is proposed. Firstly, using the natural correlation of each objective in a MaOP, the elite population distribution features in the evolutionary stages are extracted which are regarded as knowledge information. Then, optimize the corresponding single objective problems. Finally, the population distribution features from these single optimization objectives are periodically transferred to the many-objective problem to guide the evolutionary direction of the MaOPs. The numerical simulation results show that the proposed algorithm MOEA-KTPC, can successfully accelerate the convergence of the many-objective problem without reducing the quality of the approximate solution set.
AbstractList The objective based decomposition algorithm NSGA-III, which incorporates the Pareto dominance relation, shows great potential in solving many-objective optimization problems (MaOPs). However, NSGA-III is difficult in converging when the number of objectives increases. Therefore, an approach for many-objective evolutionary optimization based on single objective population distribution characteristics (MOEA-KTPC) is proposed. Firstly, using the natural correlation of each objective in a MaOP, the elite population distribution features in the evolutionary stages are extracted which are regarded as knowledge information. Then, optimize the corresponding single objective problems. Finally, the population distribution features from these single optimization objectives are periodically transferred to the many-objective problem to guide the evolutionary direction of the MaOPs. The numerical simulation results show that the proposed algorithm MOEA-KTPC, can successfully accelerate the convergence of the many-objective problem without reducing the quality of the approximate solution set.
Author Zhang, Bin
Mao, Huiting
Shi, Xuhua
Author_xml – sequence: 1
  givenname: Huiting
  surname: Mao
  fullname: Mao, Huiting
  email: maohtnbu@163.com
  organization: Ningbo University,Faculty of electrical engineering and computer science,Ningbo,China
– sequence: 2
  givenname: Xuhua
  surname: Shi
  fullname: Shi, Xuhua
  email: shixuhua@nbu.edu.cn
  organization: Ningbo University,Faculty of electrical engineering and computer science,Ningbo,China
– sequence: 3
  givenname: Bin
  surname: Zhang
  fullname: Zhang, Bin
  email: zbincan@163.com
  organization: Ningbo University,Faculty of electrical engineering and computer science,Ningbo,China
BookMark eNpFUNtOwzAUCxI8wNgfIJEf6Ehy0mR5HN24SENFGjxPZ-npFtS1U5tNGl9PYSCeLFu2JfuKnddNTYzdSjGSUri7aZ4tjHDWjpRQMJJCOW2UPGNDZ90YUgEOUiUvWXzB-pjkqw_yMRyIzw5NtY-hqbE98nwXwzZ84jfnk2rdtCFutvweOyp4Ly1Cva6I_6dfm92-OtmnoYttWP108WyDLfpIbS8G312zixKrjoa_OGDvD7O37CmZ54_P2WSeBCldTICc15IAlPamTDEF1EoYOS6kJ2uxsEYqsKlODRAiaO-1KVQBYyxLZwEG7ObUG4houWvDtl-1_DsDvgCR4Vwl
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DOCS60977.2023.10294621
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350393521
EndPage 8
ExternalDocumentID 10294621
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: 61773225,61803214
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-3e9c41e3324c6f5a53a420618d1ce77ad76123754563eaa34cc46d2d38aff9733
IEDL.DBID RIE
IngestDate Wed Jan 10 09:28:11 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-3e9c41e3324c6f5a53a420618d1ce77ad76123754563eaa34cc46d2d38aff9733
PageCount 8
ParticipantIDs ieee_primary_10294621
PublicationCentury 2000
PublicationDate 2023-Sept.-22
PublicationDateYYYYMMDD 2023-09-22
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-22
  day: 22
PublicationDecade 2020
PublicationTitle 2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS)
PublicationTitleAbbrev DOCS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8454498
Snippet The objective based decomposition algorithm NSGA-III, which incorporates the Pareto dominance relation, shows great potential in solving many-objective...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Approximation algorithms
Complex systems
Correlation
Data mining
Feature extraction
knowledge transfer
many-objective problems
Numerical simulation
population characteristics
population distribution
Sociology
Title Many-Objective Evolutionary Optimization Algorithm Based on Single Objective Population Distribution Characteristics
URI https://ieeexplore.ieee.org/document/10294621
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6UePCkRozv9OC1uH3sdntUHvEikKAJN9JtZxWDYHAh8d87XRYIBw_emqaPpO10Ztr55iPkzimde6cVU5anTCmjApF7xqRNY5MniqfGl2QTuttNh0PTr8DqJRYGAMrgM2iEYvmX72duEZ7KUMIFDhRg4_ta6xVYq4rZ4pG5b_WagyRCg6YROMEb69Y7vCml2ugc_XPCY1LfAvBof6NaTsgeTE9J8YyCy3rZx-qOou1ldWzs_If2UPQ_K0wlfZi8zdDpf_-kj6ikPMWqAY4zAbrt3d8wd9FWSJ5b8V7R5m4G5zp57bRfmk-sIk1gY85NwSQYpzhINJRcksc2llYJVNqp5w60tl6HhCs6GE4SrJXKOZV44WVq89xoKc9IbTqbwjmhaLpk3kUuFhm6gdZkBr0_HxsBJvLSwQWphyUbfa3yYozWq3X5R_0VOQwbE6IthLgmtWK-gBty4JbF-Ht-W-7mL0trpDk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MmuhJjRjf9uB1cfvY7faoPIKRVwIm3Ei37SoGWIMLif_e6bJAOHjw1jR9JG2nM9PONx9CD5qLxGjBPa5I5HEuuSNyjz2mokAmISeRNDnZhOh0ouFQ9gqweo6FsdbmwWe24or5X75J9cI9lYGEUxjIwcb3A84pWcG1iqgt4svHWrfaD30waSqOFbyybr_DnJIrjsbxP6c8QeUtBA_3NsrlFO3Z2RnK2iC6Xjf-XN1SuL4sDo6a_-AuCP-0QFXip8l7Cm7_xxQ_g5oyGKr6MM7E4m3v3oa7C9dc-tyC-QpXd3M4l9Fboz6oNr2CNsEbEyIzj1mpObEMTCUdJoEKmOIU1HZkiLZCKCNcyhXhTCdmlWJcax4aalikkkQKxs5RaZbO7AXCYLzERvs6oDE4gkrGEvw_E0hqpW-Ytpeo7JZs9LXKjDFar9bVH_X36LA5aLdGrZfO6zU6cpvkYi8ovUGlbL6wt-hAL7Px9_wu39lf_7-ngA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Data-driven+Optimization+of+Complex+Systems+%28DOCS%29&rft.atitle=Many-Objective+Evolutionary+Optimization+Algorithm+Based+on+Single+Objective+Population+Distribution+Characteristics&rft.au=Mao%2C+Huiting&rft.au=Shi%2C+Xuhua&rft.au=Zhang%2C+Bin&rft.date=2023-09-22&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FDOCS60977.2023.10294621&rft.externalDocID=10294621