Many-Objective Evolutionary Optimization Algorithm Based on Single Objective Population Distribution Characteristics
The objective based decomposition algorithm NSGA-III, which incorporates the Pareto dominance relation, shows great potential in solving many-objective optimization problems (MaOPs). However, NSGA-III is difficult in converging when the number of objectives increases. Therefore, an approach for many...
Gespeichert in:
| Veröffentlicht in: | 2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS) S. 1 - 8 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
22.09.2023
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The objective based decomposition algorithm NSGA-III, which incorporates the Pareto dominance relation, shows great potential in solving many-objective optimization problems (MaOPs). However, NSGA-III is difficult in converging when the number of objectives increases. Therefore, an approach for many-objective evolutionary optimization based on single objective population distribution characteristics (MOEA-KTPC) is proposed. Firstly, using the natural correlation of each objective in a MaOP, the elite population distribution features in the evolutionary stages are extracted which are regarded as knowledge information. Then, optimize the corresponding single objective problems. Finally, the population distribution features from these single optimization objectives are periodically transferred to the many-objective problem to guide the evolutionary direction of the MaOPs. The numerical simulation results show that the proposed algorithm MOEA-KTPC, can successfully accelerate the convergence of the many-objective problem without reducing the quality of the approximate solution set. |
|---|---|
| AbstractList | The objective based decomposition algorithm NSGA-III, which incorporates the Pareto dominance relation, shows great potential in solving many-objective optimization problems (MaOPs). However, NSGA-III is difficult in converging when the number of objectives increases. Therefore, an approach for many-objective evolutionary optimization based on single objective population distribution characteristics (MOEA-KTPC) is proposed. Firstly, using the natural correlation of each objective in a MaOP, the elite population distribution features in the evolutionary stages are extracted which are regarded as knowledge information. Then, optimize the corresponding single objective problems. Finally, the population distribution features from these single optimization objectives are periodically transferred to the many-objective problem to guide the evolutionary direction of the MaOPs. The numerical simulation results show that the proposed algorithm MOEA-KTPC, can successfully accelerate the convergence of the many-objective problem without reducing the quality of the approximate solution set. |
| Author | Zhang, Bin Mao, Huiting Shi, Xuhua |
| Author_xml | – sequence: 1 givenname: Huiting surname: Mao fullname: Mao, Huiting email: maohtnbu@163.com organization: Ningbo University,Faculty of electrical engineering and computer science,Ningbo,China – sequence: 2 givenname: Xuhua surname: Shi fullname: Shi, Xuhua email: shixuhua@nbu.edu.cn organization: Ningbo University,Faculty of electrical engineering and computer science,Ningbo,China – sequence: 3 givenname: Bin surname: Zhang fullname: Zhang, Bin email: zbincan@163.com organization: Ningbo University,Faculty of electrical engineering and computer science,Ningbo,China |
| BookMark | eNpFUNtOwzAUCxI8wNgfIJEf6Ehy0mR5HN24SENFGjxPZ-npFtS1U5tNGl9PYSCeLFu2JfuKnddNTYzdSjGSUri7aZ4tjHDWjpRQMJJCOW2UPGNDZ90YUgEOUiUvWXzB-pjkqw_yMRyIzw5NtY-hqbE98nwXwzZ84jfnk2rdtCFutvweOyp4Ly1Cva6I_6dfm92-OtmnoYttWP108WyDLfpIbS8G312zixKrjoa_OGDvD7O37CmZ54_P2WSeBCldTICc15IAlPamTDEF1EoYOS6kJ2uxsEYqsKlODRAiaO-1KVQBYyxLZwEG7ObUG4houWvDtl-1_DsDvgCR4Vwl |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/DOCS60977.2023.10294621 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350393521 |
| EndPage | 8 |
| ExternalDocumentID | 10294621 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of China grantid: 61773225,61803214 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-3e9c41e3324c6f5a53a420618d1ce77ad76123754563eaa34cc46d2d38aff9733 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jan 10 09:28:11 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-3e9c41e3324c6f5a53a420618d1ce77ad76123754563eaa34cc46d2d38aff9733 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10294621 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Sept.-22 |
| PublicationDateYYYYMMDD | 2023-09-22 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS) |
| PublicationTitleAbbrev | DOCS |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8454498 |
| Snippet | The objective based decomposition algorithm NSGA-III, which incorporates the Pareto dominance relation, shows great potential in solving many-objective... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Approximation algorithms Complex systems Correlation Data mining Feature extraction knowledge transfer many-objective problems Numerical simulation population characteristics population distribution Sociology |
| Title | Many-Objective Evolutionary Optimization Algorithm Based on Single Objective Population Distribution Characteristics |
| URI | https://ieeexplore.ieee.org/document/10294621 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6UePCkRozv9OC1uH3sdntUHvEikKAJN9JtZxWDYHAh8d87XRYIBw_emqaPpO10Ztr55iPkzimde6cVU5anTCmjApF7xqRNY5MniqfGl2QTuttNh0PTr8DqJRYGAMrgM2iEYvmX72duEZ7KUMIFDhRg4_ta6xVYq4rZ4pG5b_WagyRCg6YROMEb69Y7vCml2ugc_XPCY1LfAvBof6NaTsgeTE9J8YyCy3rZx-qOou1ldWzs_If2UPQ_K0wlfZi8zdDpf_-kj6ikPMWqAY4zAbrt3d8wd9FWSJ5b8V7R5m4G5zp57bRfmk-sIk1gY85NwSQYpzhINJRcksc2llYJVNqp5w60tl6HhCs6GE4SrJXKOZV44WVq89xoKc9IbTqbwjmhaLpk3kUuFhm6gdZkBr0_HxsBJvLSwQWphyUbfa3yYozWq3X5R_0VOQwbE6IthLgmtWK-gBty4JbF-Ht-W-7mL0trpDk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MmuhJjRjf9uB1cfvY7faoPIKRVwIm3Ei37SoGWIMLif_e6bJAOHjw1jR9JG2nM9PONx9CD5qLxGjBPa5I5HEuuSNyjz2mokAmISeRNDnZhOh0ouFQ9gqweo6FsdbmwWe24or5X75J9cI9lYGEUxjIwcb3A84pWcG1iqgt4svHWrfaD30waSqOFbyybr_DnJIrjsbxP6c8QeUtBA_3NsrlFO3Z2RnK2iC6Xjf-XN1SuL4sDo6a_-AuCP-0QFXip8l7Cm7_xxQ_g5oyGKr6MM7E4m3v3oa7C9dc-tyC-QpXd3M4l9Fboz6oNr2CNsEbEyIzj1mpObEMTCUdJoEKmOIU1HZkiLZCKCNcyhXhTCdmlWJcax4aalikkkQKxs5RaZbO7AXCYLzERvs6oDE4gkrGEvw_E0hqpW-Ytpeo7JZs9LXKjDFar9bVH_X36LA5aLdGrZfO6zU6cpvkYi8ovUGlbL6wt-hAL7Px9_wu39lf_7-ngA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Data-driven+Optimization+of+Complex+Systems+%28DOCS%29&rft.atitle=Many-Objective+Evolutionary+Optimization+Algorithm+Based+on+Single+Objective+Population+Distribution+Characteristics&rft.au=Mao%2C+Huiting&rft.au=Shi%2C+Xuhua&rft.au=Zhang%2C+Bin&rft.date=2023-09-22&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FDOCS60977.2023.10294621&rft.externalDocID=10294621 |