Electrical Load Forecasting Based on Random Forest, XGBoost, and Linear Regression Algorithms

Power infrastructure management requires a consistent power supply. One approach of doing this is predicting the power usage. This requires a variety of elements to be considered such as the environment and the spatial and temporal aspects. These tend to demonstrate a considerable fluctuation in the...

Full description

Saved in:
Bibliographic Details
Published in:International Conference on Information Technology Research (Online) pp. 25 - 31
Main Authors: Abumohsen, Mobarak, Owda, Amani Yousef, Owda, Majdi
Format: Conference Proceeding
Language:English
Published: IEEE 09.08.2023
Subjects:
ISSN:2831-3399
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Power infrastructure management requires a consistent power supply. One approach of doing this is predicting the power usage. This requires a variety of elements to be considered such as the environment and the spatial and temporal aspects. These tend to demonstrate a considerable fluctuation in the electrical load pattern depending on the temporal and environmental variables. The primary goal of this research is to develop forecasting models that properly anticipate in predicting the electrical load based on a real and unique dataset of the district energy company (Tubas District Electricity Company - in Palestine). Three machine learning models were used to forecast the electrical loads; namely: (1) Random Forest (RF), (2) XGBoost, and (3) Linear Regression (LR). The models were evaluated, and the RF model was found to achieve the best performance in terms of accuracy. The RF model obtained an R-squared of 87.749%, a Mean Absolute Error (MAE) of 0.03904, and a Mean Square Error (MSE) of 0.00270.
AbstractList Power infrastructure management requires a consistent power supply. One approach of doing this is predicting the power usage. This requires a variety of elements to be considered such as the environment and the spatial and temporal aspects. These tend to demonstrate a considerable fluctuation in the electrical load pattern depending on the temporal and environmental variables. The primary goal of this research is to develop forecasting models that properly anticipate in predicting the electrical load based on a real and unique dataset of the district energy company (Tubas District Electricity Company - in Palestine). Three machine learning models were used to forecast the electrical loads; namely: (1) Random Forest (RF), (2) XGBoost, and (3) Linear Regression (LR). The models were evaluated, and the RF model was found to achieve the best performance in terms of accuracy. The RF model obtained an R-squared of 87.749%, a Mean Absolute Error (MAE) of 0.03904, and a Mean Square Error (MSE) of 0.00270.
Author Abumohsen, Mobarak
Owda, Amani Yousef
Owda, Majdi
Author_xml – sequence: 1
  givenname: Mobarak
  surname: Abumohsen
  fullname: Abumohsen, Mobarak
  email: m.abumohsen@student.aaup.edu
  organization: Arab American University,Department of Natural, Engineering and Technology Sciences,Ramallah,Palestine,P600
– sequence: 2
  givenname: Amani Yousef
  surname: Owda
  fullname: Owda, Amani Yousef
  email: amani.owda@aaup.edu
  organization: Arab American University,Department of Natural, Engineering and Technology Sciences,Ramallah,Palestine,P600
– sequence: 3
  givenname: Majdi
  surname: Owda
  fullname: Owda, Majdi
  email: majdi.owda@aaup.edu
  organization: Arab American University Unisco Chair for Data Science,Faculty of Data Science,Ramallah,Palestine,P600
BookMark eNo1kEFPAjEUhKvRRET-gYn9AS6-126X9ggEkGQTE8LBiyHP7lusWbZmuxf_vYB6msl8kznMrbhqY8tCPCCMEcE9refrrbFgirECpccIShlX2AsxchNntQGtAAq4FANlNWZaO3cjRil9ApxQjqgH4m3RsO-74KmRZaRKLmPHnlIf2r2cUeJKxlZuqK3i4cxS_yhfV7MYT-YYyzK0TJ3c8P4IUzi2p80-dqH_OKQ7cV1Tk3j0p0OxXS628-esfFmt59MyC4iuz3SuClepnHJA9Ey51wZ5Yt6hwJocGrATrzww1wjAtUWmymgkW7DOUQ_F_e9sYObdVxcO1H3v_g_RP55EVjE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIT58056.2023.10225968
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350320060
EISSN 2831-3399
EndPage 31
ExternalDocumentID 10225968
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-34269d24a4011cea4c351e75b061fa915087c2c0eef100ef81ead531a86e3413
IEDL.DBID RIE
IngestDate Wed Aug 27 02:54:28 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-34269d24a4011cea4c351e75b061fa915087c2c0eef100ef81ead531a86e3413
PageCount 7
ParticipantIDs ieee_primary_10225968
PublicationCentury 2000
PublicationDate 2023-Aug.-9
PublicationDateYYYYMMDD 2023-08-09
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-Aug.-9
  day: 09
PublicationDecade 2020
PublicationTitle International Conference on Information Technology Research (Online)
PublicationTitleAbbrev ICIT
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204113
Score 1.8404776
Snippet Power infrastructure management requires a consistent power supply. One approach of doing this is predicting the power usage. This requires a variety of...
SourceID ieee
SourceType Publisher
StartPage 25
SubjectTerms Companies
electric power
electrical demand
Linear regression
Load forecasting
machine learning
Machine learning algorithms
Mean square error methods
Power supplies
Radio frequency
Title Electrical Load Forecasting Based on Random Forest, XGBoost, and Linear Regression Algorithms
URI https://ieeexplore.ieee.org/document/10225968
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxQALX0V8ywMjaePETuyRVi1UQlVVdeiCKsc5l0o0Rk3K78d2P4CBgc1yZCm6s_N0znv3ELqPAIBLYEGkuS1QFKGBgJwHjGX266eoSLX2ZhPpYMAnEzHciNW9Fsau9eQzaLqh_5efG7VyV2UtV50wkfAaqqVpshZr7S5U4iikhMQbDhcJRavf6Y8ZtwjfdB7hze3qXz4qHkZ6R_98gWPU-Bbk4eEOak7QHhSn6PBHL8Ez9Nr1hjYu5vjFyBw7000lS0drxm2LVTk2BR7JIjcL_6ysHvDkqW2MG9hpbMtSu-3xCGZrbmyBH99nZjmv3hZlA4173XHnOdh4JwRzQkQVxE6imkdU2vqJKJBUxYxAyjKL31oK1wU-VZEKATQJQ7CJslvKnkfJE3DAdo7qhSngAmFOJQgmaZKEMdWJFEzzzGY2s7VaqFO4RA0XqOnHujvGdBujqz_mr9GBS4cn0YkbVK-WK7hF--qzmpfLO5_TL2ySobE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTdSLvzD-tgePDtZt3dqjEBAiEkJ24GJI6d6QRFbDhn-_bRmoBw_emi5NlvfafXnd970PoXsPAJgA6ngp0wWKJIHDIWEOpRP99ZMBj9LUmk1E_T4bjfigFKtbLYxea8lnUDND-y8_UXJprsrqpjqhPGTbaMdYZ5Vyrc2Viu-5ASF-yeIiLq93m92YMo3xNeMSXluv_-WkYoGkffjPVzhC1W9JHh5swOYYbUF2gg5-dBM8Ra8ta2ljoo57SiTY2G5KkRtiM25otEqwyvBQZIma22d58YBHTw2lzEBPY12Y6o2PhzBdsWMz_Pg-VYtZ8TbPqyhut-JmxyndE5wZIbxwfCNSTbxA6AqKSBCB9CmBiE40gqeCmz7wkfSkC5AS1wWdKr2p9IkULAQDbWeokqkMzhFmgQBORRCGrh-koeA0ZROd24mu1tw0ggtUNYEaf6z6Y4zXMbr8Y_4O7XXil9641-0_X6F9kxpLqePXqFIslnCDduVnMcsXtza_XwnmpPo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Information+Technology+Research+%28Online%29&rft.atitle=Electrical+Load+Forecasting+Based+on+Random+Forest%2C+XGBoost%2C+and+Linear+Regression+Algorithms&rft.au=Abumohsen%2C+Mobarak&rft.au=Owda%2C+Amani+Yousef&rft.au=Owda%2C+Majdi&rft.date=2023-08-09&rft.pub=IEEE&rft.eissn=2831-3399&rft.spage=25&rft.epage=31&rft_id=info:doi/10.1109%2FICIT58056.2023.10225968&rft.externalDocID=10225968