Knowledge Assisted Deep Reinforcement Learning for Electric Vehicle Charging Control
Deep reinforcement learning (DRL) is a promising data-driven approach to solve the electric vehicle (EV) charging problem. However, DRL based charging strategies maybe not always meet the requirements of users. In this paper, a knowledge-assisted algorithm combining twin delayed deep deterministic p...
Saved in:
| Published in: | 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2) pp. 1882 - 1887 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
11.11.2022
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Deep reinforcement learning (DRL) is a promising data-driven approach to solve the electric vehicle (EV) charging problem. However, DRL based charging strategies maybe not always meet the requirements of users. In this paper, a knowledge-assisted algorithm combining twin delayed deep deterministic policy gradient (TD3) algorithm and imitation learning is proposed to control the charging process of EVs. The purpose is to minimize the cost while charging to the desired value. With the assistance of knowledge, the out-of-limit actions are corrected, so only the reward function to constrain the cost needs to be set, speeding up the convergence speed of the algorithm. To make the actor network acquire the capability of charging to the desired value, imitation learning is used to correct the actor network. The simulation results demonstrate the superiority of the knowledge-assisted TD3 algorithm with imitation learning. |
|---|---|
| AbstractList | Deep reinforcement learning (DRL) is a promising data-driven approach to solve the electric vehicle (EV) charging problem. However, DRL based charging strategies maybe not always meet the requirements of users. In this paper, a knowledge-assisted algorithm combining twin delayed deep deterministic policy gradient (TD3) algorithm and imitation learning is proposed to control the charging process of EVs. The purpose is to minimize the cost while charging to the desired value. With the assistance of knowledge, the out-of-limit actions are corrected, so only the reward function to constrain the cost needs to be set, speeding up the convergence speed of the algorithm. To make the actor network acquire the capability of charging to the desired value, imitation learning is used to correct the actor network. The simulation results demonstrate the superiority of the knowledge-assisted TD3 algorithm with imitation learning. |
| Author | Liu, Qiong Sun, Hongbin Guo, Ye Xiao, Li Zai, Rui Wu, Qiuwei |
| Author_xml | – sequence: 1 givenname: Rui surname: Zai fullname: Zai, Rui email: zair20@mails.tsinghua.edu.cn organization: Tsinghua University,Tsinghua-Berkeley Shenzhen Institute,Shenzhen,China – sequence: 2 givenname: Ye surname: Guo fullname: Guo, Ye email: guo-ye@sz.tsinghua.edu.cn organization: Tsinghua University,Tsinghua-Berkeley Shenzhen Institute,Shenzhen,China – sequence: 3 givenname: Qiong surname: Liu fullname: Liu, Qiong email: liuqiong_yl@outlook.com organization: Tsinghua University,Tsinghua-Berkeley Shenzhen Institute,Shenzhen,China – sequence: 4 givenname: Hongbin surname: Sun fullname: Sun, Hongbin email: shb@sz.tsinghua.edu.cn organization: Tsinghua University,Department of Electrical Engineering,Beijing,China – sequence: 5 givenname: Qiuwei surname: Wu fullname: Wu, Qiuwei email: qiuwu@sz.tsinghua.edu.cn organization: Tsinghua University,Tsinghua-Berkeley Shenzhen Institute,Shenzhen,China – sequence: 6 givenname: Li surname: Xiao fullname: Xiao, Li email: xiaoli@sz.tsinghua.edu.cn organization: Tsinghua University,Tsinghua-Berkeley Shenzhen Institute,Shenzhen,China |
| BookMark | eNo1j9FKwzAUhiPohc69gUheoDMnp0may1GrGxYEmd6OJj3tAl060oL49k7Uqw_-D374bthlHCMxdg9iBSDsQ7WVSksNKymkXIEA0NLABVtaYwtUAnMDyl6z3UscPwdqe-LraQrTTC1_JDrxNwqxG5OnI8WZ19SkGGLPzxOvBvJzCp5_0CH4gXh5aFL_Y8sxzmkcbtlV1wwTLf-4YO9P1a7cZPXr87Zc11kAsHOGiMblmOeorPeFt0WuXCeUU_qcIMmgQydylECttrLTwhrnyRDothXU4YLd_f4GItqfUjg26Wv_H4vfnmJOPA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/EI256261.2022.10116271 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350347159 |
| EndPage | 1887 |
| ExternalDocumentID | 10116271 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-3337b4344359cc8c9845bf05b561092e73b3b04321ed692f6097bce7e16dd0ef3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:14:52 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-3337b4344359cc8c9845bf05b561092e73b3b04321ed692f6097bce7e16dd0ef3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10116271 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Nov.-11 |
| PublicationDateYYYYMMDD | 2022-11-11 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov.-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2) |
| PublicationTitleAbbrev | EI2 |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8128506 |
| Snippet | Deep reinforcement learning (DRL) is a promising data-driven approach to solve the electric vehicle (EV) charging problem. However, DRL based charging... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1882 |
| SubjectTerms | Charging control Costs Deep learning Electric vehicle charging imitation learning Process control Reinforcement learning Simulation System integration twin delayed deep deterministic policy gradient algorithm (TD3) |
| Title | Knowledge Assisted Deep Reinforcement Learning for Electric Vehicle Charging Control |
| URI | https://ieeexplore.ieee.org/document/10116271 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aPHhSseI3OXhN3Wx2k825tihCKVKlt7KZTLSXttTW399JulU8ePAWQiDwJmE-kjePsTsHKKX1hQBKkkVBVha1KbUIXgYgnxKUDklswgwG1Xhshw1ZPXFhEDF9PsNOHKa3fD-HdSyV0Q2XUueRMb5vjNmStRrWr8zsfe-J_DdlBJT15Xlnt_iXbEryGv2jf-53zNo__Ds-_PYsJ2wPZ6ds9Lwrf3HCNFrH8wfEBX_B1P0UUqGPNw1T3zlN8V4SuZkCf8OPeEB4fF2PskS8u_2i3mav_d6o-ygaTQQxJUxXQillXKEKinIsQAW2KkoXstLFOMjmaJRTLrbZk-i1zYPOrCF7GJTa-wyDOmOt2XyG54zX0gcnSyhQU9gW6joYXwFWKqstaOMuWDtCMlls215Mdmhc_jF_xQ4j8JGoJ-U1a62Wa7xhB_C1mn4ub5OxNk66l1E |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgMhFCWmmuhKjTW-ZeGWOgwMDOvapk1r05jRdNcMcNFu2qYPv19gphoXLtwRQkJyD-Q-4NyD0IM2QKmynBifJBPuUSalzARxljrjfYpjwkWxCTka5ZOJGtdk9ciFAYD4-QxaYRjf8u3CbEOpzN9wSkUaGOP7GecprehaNe-XJuqx0_ce3OcEPu9L09Zu-S_hlOg3usf_3PEENX8YeHj87VtO0R7Mz1Ax2BXAsLdqwMfiJ4AlfoHY_9TEUh-uW6a-Yz-FO1HmZmbwG3yEI4LD-3oQJsLt6pN6E712O0W7R2pVBDLzVt0QxpjUnHEf5yhjcqNynmmXZDpEQioFyTTTodEeBStU6kSipEdEAhXWJuDYOWrMF3O4QLik1mmaGQ7CB26uLJ20uYGcJaUyQupL1AwmmS6rxhfTnTWu_pi_R4e94nk4HfZHg2t0FEAItD1Kb1Bjs9rCLTown5vZenUXgfsCXXOamA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+6th+Conference+on+Energy+Internet+and+Energy+System+Integration+%28EI2%29&rft.atitle=Knowledge+Assisted+Deep+Reinforcement+Learning+for+Electric+Vehicle+Charging+Control&rft.au=Zai%2C+Rui&rft.au=Guo%2C+Ye&rft.au=Liu%2C+Qiong&rft.au=Sun%2C+Hongbin&rft.date=2022-11-11&rft.pub=IEEE&rft.spage=1882&rft.epage=1887&rft_id=info:doi/10.1109%2FEI256261.2022.10116271&rft.externalDocID=10116271 |