Identification of Related Factors of Users' Power Consumption and Prediction Model of Power Consumption Based on Random Forest Algorithm

Given the characteristics of big data associated with power consumption prediction, such as numerous types, vast volume, high dimensionality, and rapid generation speed, we propose a method for subspace clustering analysis of extensive user electricity characteristics after studying the evaluation i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 International Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC) s. 205 - 210
Hlavní autori: Zhu, Zheng, Xiao, Shuang, Zhang, Ruijia, An, Bailong
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 29.12.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Given the characteristics of big data associated with power consumption prediction, such as numerous types, vast volume, high dimensionality, and rapid generation speed, we propose a method for subspace clustering analysis of extensive user electricity characteristics after studying the evaluation indicators of user electricity traits. This method aims to extract various power consumption patterns among users. Users are categorized into groups based on their different power consumption patterns, and a mutual information matrix is utilized to identify factors related to power consumption within these user groups. These factors encompass regional and industry economic data, climatic conditions, and electricity prices, leading to the development of a big data prediction model for power consumption. This approach effectively discerns pertinent factors influencing power consumption across various user groups and mitigates the adverse effects of disparities in power consumption models on prediction accuracy. Simulation results validate the high predictive accuracy of this method, making it suitable for extensive big data analysis and processing.
AbstractList Given the characteristics of big data associated with power consumption prediction, such as numerous types, vast volume, high dimensionality, and rapid generation speed, we propose a method for subspace clustering analysis of extensive user electricity characteristics after studying the evaluation indicators of user electricity traits. This method aims to extract various power consumption patterns among users. Users are categorized into groups based on their different power consumption patterns, and a mutual information matrix is utilized to identify factors related to power consumption within these user groups. These factors encompass regional and industry economic data, climatic conditions, and electricity prices, leading to the development of a big data prediction model for power consumption. This approach effectively discerns pertinent factors influencing power consumption across various user groups and mitigates the adverse effects of disparities in power consumption models on prediction accuracy. Simulation results validate the high predictive accuracy of this method, making it suitable for extensive big data analysis and processing.
Author An, Bailong
Zhang, Ruijia
Xiao, Shuang
Zhu, Zheng
Author_xml – sequence: 1
  givenname: Zheng
  surname: Zhu
  fullname: Zhu, Zheng
  email: 10638186@qq.com
  organization: State Grid Shanghai Electric Power Company,Shanghai,China,200122
– sequence: 2
  givenname: Shuang
  surname: Xiao
  fullname: Xiao, Shuang
  email: 110904881@qq.com
  organization: State Grid Shanghai Electric Power Company,Shanghai,China,200122
– sequence: 3
  givenname: Ruijia
  surname: Zhang
  fullname: Zhang, Ruijia
  email: 185256827@qq.com
  organization: State Grid Shanghai Electric Power Company,Shanghai,China,200122
– sequence: 4
  givenname: Bailong
  surname: An
  fullname: An, Bailong
  email: ablpoison@qq.com
  organization: State Grid Shanghai Electric Power Company,Shanghai,China,200122
BookMark eNplUL1OwzAYNBIMUPoGCHljavFP7MRjCRQiFVFFdK6-xF_BUhJXthHiDXhs0sLGdD-6u-EuyOngByTkmrM558zcVmVV35daFCKbCybknDGWyRMyNbkppGIyVyJX5-S7sjgkt3MtJOcH6ne0xg4SWrqENvkQD9YmYog3dO0_MdDSD_Gj3x_jMFi6Dmhde5TP3mJ3KPxP3kEcN0dSjx3f06UPGBNddG8-uPTeX5KzHXQRp384IZvlw2v5NFu9PFblYjVznJs0k9xagbIwIERbNKqxGhqtgOs80wYBhOStRC0soM60ysFaaJoChSmsskxOyNXvrkPE7T64HsLXljM13iaV_AHu5WLI
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIRDC62824.2023.00043
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350375275
EndPage 210
ExternalDocumentID 10511035
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-31dd2e389a22c8b5bd6ab65a167469eaa231c3e62dae64657addabb8e298d5d03
IEDL.DBID RIE
IngestDate Wed May 08 06:11:05 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-31dd2e389a22c8b5bd6ab65a167469eaa231c3e62dae64657addabb8e298d5d03
PageCount 6
ParticipantIDs ieee_primary_10511035
PublicationCentury 2000
PublicationDate 2023-Dec.-29
PublicationDateYYYYMMDD 2023-12-29
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-29
  day: 29
PublicationDecade 2020
PublicationTitle 2023 International Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC)
PublicationTitleAbbrev ICIRDC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8553829
Snippet Given the characteristics of big data associated with power consumption prediction, such as numerous types, vast volume, high dimensionality, and rapid...
SourceID ieee
SourceType Publisher
StartPage 205
SubjectTerms Big Data
Correlation
Electricity
Identification of related factors
power consumption forecast
Power demand
Prediction algorithms
Predictive models
Random forest algorithm
Simulation
Title Identification of Related Factors of Users' Power Consumption and Prediction Model of Power Consumption Based on Random Forest Algorithm
URI https://ieeexplore.ieee.org/document/10511035
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5uePCk4sRvchA8Vdu0SZujVocDGWM42W0kfd_qYGul6_wN_myTtCoiHrylIR-Q0Pf7yUPIuVESaLwA7mUY-V4Ug_ASkRnHFQOQuUIQLtH-9BAPh8l0KkctWN1hYRDRFZ_hpW26XD6U2dqGyswfbswDP-Qd0olj0YC1WtRv4MurQToY36bCOBE2WMLC5iXOH7QpTmv0t_-53w7pfePv6OhLs-ySDSz2yHuDqc3bIBstc-oq2RBovyHNsV0Ti568oCNLfkZTh690QoGqAsyaNi3jPi0H2sJO-D3yxig2oKYxNnPKJbXsnauaXi-ey2pevyx7ZNK_e0zvvZZHwZsHgayNmAVgaCwTxViWaK5BKC24sgAEIVEpY-NlIQoGCkUkeGxkntI6QSYT4OCH-6RblAUeECqUTLjOGea5iPLY2GcIAYTaB8Yk0_yQ9Owxzl6bpzJmnyd49Ef_MdmyN2XrQ5g8Id26WuMp2cze6vmqOnMX_AFIzas_
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA46BT2pOPHbHARP1TZt0uao1eFwjjE22W2kfd_qYGtl6_wN_myTtCoiHrylIR-Q0Pf7yUPIuVYSqL0A7qQYuE4QgnAikWrHFT2QmUIQNtH-1Am73Wg0kr0arG6xMIhoi8_w0jRtLh-KdGlCZfoP1-aB6_NVsmaos2q4Vo379Vx51Y7b_dtYaDfChEuYX73F-YM4xeqN1tY_d9wmzW8EHu196ZYdsoL5LnmvULVZHWajRUZtLRsCbVW0OaZraPCTF7Rn6M9obBGWVixQlYNe0yRm7KdhQZuaCb9H3mjVBlQ3-npOMaOGv3NR0uvpczGflC-zJhm27gbxvVMzKTgTz5OlFrQADLVtohhLo4QnIFQiuDIQBCFRKW3lpT4KBgpFIHiopZ5KkgiZjICD6--RRl7kuE-oUDLiScYwy0SQhdpCQ_DAT1xgTLKEH5CmOcbxa_VYxvjzBA__6D8jG_eDx8640-4-HJFNc2umWoTJY9Io50s8IevpWzlZzE_tZX8AXMquiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Internet+of+Things%2C+Robotics+and+Distributed+Computing+%28ICIRDC%29&rft.atitle=Identification+of+Related+Factors+of+Users%27+Power+Consumption+and+Prediction+Model+of+Power+Consumption+Based+on+Random+Forest+Algorithm&rft.au=Zhu%2C+Zheng&rft.au=Xiao%2C+Shuang&rft.au=Zhang%2C+Ruijia&rft.au=An%2C+Bailong&rft.date=2023-12-29&rft.pub=IEEE&rft.spage=205&rft.epage=210&rft_id=info:doi/10.1109%2FICIRDC62824.2023.00043&rft.externalDocID=10511035